A method for stable gene knock-down by RNA interference in larvae of the salmon louse (Lepeophtheirus salmonis)

2014 ◽  
Vol 140 ◽  
pp. 44-51 ◽  
Author(s):  
Christiane Eichner ◽  
Frank Nilsen ◽  
Sindre Grotmol ◽  
Sussie Dalvin
2021 ◽  
Author(s):  
Zhaoran Zhou ◽  
Christiane Eichner ◽  
Frank Nilsen ◽  
Inge Jonassen ◽  
Michael Dondrup

Background: The salmon louse (Lepeophtheirus salmonis) is an obligate ectoparasitic copepod, living on Atlantic salmon and other salmonids in the marine environment. Salmon lice cause a number of environmental problems and lead to large economical losses in aquaculture every year. In order to develop novel parasite control strategies, a better understanding of the mechanisms of moulting and development of the salmon louse at the transcriptional level is required. Methods: Three weighted gene co-expression networks were constructed based on the pairwise correlations of salmon louse gene expression profiles at different life stages. Network-based approaches and gene annotation information were applied to identify genes that might be important for the moulting and development of the salmon louse. RNA interference was performed for validation. Regulatory impact factors were calculated for all the transcription factor genes by examining the changes in co-expression patterns between transcription factor genes and deferentially expressed genes in middle stages and moulting stages. Results: Eight gene modules were predicted as important, and 10 genes from six of the eight modules have been found to show observable phenotypes in RNA interference experiments. We knocked down five hub genes from three modules and observed phenotypic consequences in all experiments. In the infection trial, no copepodids with the RAB1A-like gene knocked down were found on fish, while control samples developed to chalimus-1 larvae. Also, a FOXO-like gene obtained highest scores in the regulatory impact factor calculation. Conclusions: We propose a gene co-expression network-based approach to identify genes playing an important role in the moulting and development of salmon louse. The RNA interference experiments confirmed the effectiveness of our approach and demonstrated the indispensable role of RAB1A-like gene in the development of salmon louse. In addition to salmon louse, this approach could be generalized to identify important genes associated with a phenotype of interest in other organisms.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhaoran Zhou ◽  
Christiane Eichner ◽  
Frank Nilsen ◽  
Inge Jonassen ◽  
Michael Dondrup

Abstract Background The salmon louse (Lepeophtheirus salmonis) is an obligate ectoparasitic copepod living on Atlantic salmon and other salmonids in the marine environment. Salmon lice cause a number of environmental problems and lead to large economical losses in aquaculture every year. In order to develop novel parasite control strategies, a better understanding of the mechanisms of moulting and development of the salmon louse at the transcriptional level is required. Methods Three weighted gene co-expression networks were constructed based on the pairwise correlations of salmon louse gene expression profiles at different life stages. Network-based approaches and gene annotation information were applied to identify genes that might be important for the moulting and development of the salmon louse. RNA interference was performed for validation. Regulatory impact factors were calculated for all the transcription factor genes by examining the changes in co-expression patterns between transcription factor genes and deferentially expressed genes in middle stages and moulting stages. Results Eight gene modules were predicted as important, and 10 genes from six of the eight modules have been found to show observable phenotypes in RNA interference experiments. We knocked down five hub genes from three modules and observed phenotypic consequences in all experiments. In the infection trial, no copepodids with a RAB1A-like gene knocked down were found on fish, while control samples developed to chalimus-1 larvae. Also, a FOXO-like transcription factor obtained highest scores in the regulatory impact factor calculation. Conclusions We propose a gene co-expression network-based approach to identify genes playing an important role in the moulting and development of salmon louse. The RNA interference experiments confirm the effectiveness of our approach and demonstrated the indispensable role of a RAB1A-like gene in the development of the salmon louse. We propose that our approach could be generalized to identify important genes associated with a phenotype of interest in other organisms.


2011 ◽  
Vol 89 (9) ◽  
pp. 796-807 ◽  
Author(s):  
S. Tang ◽  
A.G. Lewis ◽  
M. Sackville ◽  
L. Nendick ◽  
C. DiBacco ◽  
...  

We observed diel vertical migration patterns in juvenile pink salmon ( Oncorhynchus gorbuscha (Walbaum, 1792)) and tested the hypothesis that fish behaviour is altered by exposure to sea lice copepodids. Experiments involved replicated field deployments of a large (9 m) plankton column, which provided a vertical distribution enclosure under natural light and salinity conditions. Diel vertical distributions of juvenile pink salmon were observed during the first 3 weeks of seawater acclimation in both the presence and the absence of the ectoparasitic salmon louse ( Lepeophtheirus salmonis (Krøyer, 1838)). Immediately upon entering seawater, juvenile pink salmon preferred the top 1 m of the water column, but they moved significantly deeper down the vertical water column as seawater acclimation time increased. A significant diel migration pattern was observed, which involved a preference for the surface at night-time, compared with daytime. When fish in the column were exposed to L. salmonis copepodids for 3 h, 43%–62% of fish became infected, fish expanded their vertical distribution range, and significant changes in vertical distribution patterns were observed.


Sign in / Sign up

Export Citation Format

Share Document