salmon louse
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 43)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Thomas Bøhn ◽  
Rune Nilsen ◽  
Karl Øystein Gjelland ◽  
Martin Biuw ◽  
Anne Dagrun Sandvik ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhaoran Zhou ◽  
Christiane Eichner ◽  
Frank Nilsen ◽  
Inge Jonassen ◽  
Michael Dondrup

Abstract Background The salmon louse (Lepeophtheirus salmonis) is an obligate ectoparasitic copepod living on Atlantic salmon and other salmonids in the marine environment. Salmon lice cause a number of environmental problems and lead to large economical losses in aquaculture every year. In order to develop novel parasite control strategies, a better understanding of the mechanisms of moulting and development of the salmon louse at the transcriptional level is required. Methods Three weighted gene co-expression networks were constructed based on the pairwise correlations of salmon louse gene expression profiles at different life stages. Network-based approaches and gene annotation information were applied to identify genes that might be important for the moulting and development of the salmon louse. RNA interference was performed for validation. Regulatory impact factors were calculated for all the transcription factor genes by examining the changes in co-expression patterns between transcription factor genes and deferentially expressed genes in middle stages and moulting stages. Results Eight gene modules were predicted as important, and 10 genes from six of the eight modules have been found to show observable phenotypes in RNA interference experiments. We knocked down five hub genes from three modules and observed phenotypic consequences in all experiments. In the infection trial, no copepodids with a RAB1A-like gene knocked down were found on fish, while control samples developed to chalimus-1 larvae. Also, a FOXO-like transcription factor obtained highest scores in the regulatory impact factor calculation. Conclusions We propose a gene co-expression network-based approach to identify genes playing an important role in the moulting and development of salmon louse. The RNA interference experiments confirm the effectiveness of our approach and demonstrated the indispensable role of a RAB1A-like gene in the development of the salmon louse. We propose that our approach could be generalized to identify important genes associated with a phenotype of interest in other organisms.


Author(s):  
Claudia Tschesche ◽  
Michaël Bekaert ◽  
Joseph L. Humble ◽  
James E. Bron ◽  
Armin Sturm

Genomics ◽  
2021 ◽  
Author(s):  
Rasmus Skern-Mauritzen ◽  
Ketil Malde ◽  
Christiane Eichner ◽  
Michael Dondrup ◽  
Tomasz Furmanek ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (7) ◽  
pp. 765
Author(s):  
Marta Solé ◽  
Marc Lenoir ◽  
José-Manuel Fortuño ◽  
Steffen De Vreese ◽  
Mike van der Schaar ◽  
...  

The salmon louse Lepeophtheirus salmonis is a major disease problem in salmonids farming and there are indications that it also plays a role in the decline of wild salmon stocks. This study shows the first ultrastructural images of pathological changes in the sensory setae of the first antenna and in inner tissues in different stages of L. salmonis development after sound exposure in laboratory and sea conditions. Given the current ineffectiveness of traditional methods to eradicate this plague, and the strong impact on the environment these treatments often provoke, the described response to sounds and the associated injuries in the lice sensory organs could represent an interesting basis for developing a bioacoustics method to prevent lice infection and to treat affected salmons.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251575
Author(s):  
Joakim Brunet ◽  
Christiane Eichner ◽  
Rune Male

The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic crustacean that annually inflicts substantial losses to the aquaculture industry in the northern hemisphere and poses a threat to the wild populations of salmonids. The salmon louse life cycle consists of eight developmental stages each separated by a molt. Fushi Tarazu Factor-1 (FTZ-F1) is an ecdysteroid-regulated gene that encodes a member of the NR5A family of nuclear receptors that is shown to play a crucial regulatory role in molting in insects and nematodes. Characterization of an FTZ-F1 orthologue in the salmon louse gave two isoforms named αFTZ-F1 and βFTZ-F1, which are identical except for the presence of a unique N-terminal domain (A/B domain). A comparison suggest conservation of the FTZ-F1 gene structure among ecdysozoans, with the exception of nematodes, to produce isoforms with unique N-terminal domains through alternative transcription start and splicing. The two isoforms of the salmon louse FTZ-F1 were expressed in different amounts in the same tissues and showed a distinct cyclical expression pattern through the molting cycle with βFTZ-F1 being the highest expressed isoform. While RNA interference knockdown of βFTZ-F1 in nauplius larvae and in pre-adult males lead to molting arrest, knockdown of βFTZ-F1 in pre-adult II female lice caused disruption of oocyte maturation at the vitellogenic stage. No apparent phenotype could be observed in αFTZ-F1 knockdown larvae, or in their development to adults, and no genes were found to be differentially expressed in the nauplii larvae following αFTZ-F1 knockdown. βFTZ-F1 knockdown in nauplii larvae caused both down and upregulation of genes associated with proteolysis and chitin binding and affected a large number of genes which are in normal salmon louse development expressed in a cyclical pattern. This is the first description of FTZ-F1 gene function in copepod crustaceans and provides a foundation to expand the understanding of the molecular mechanisms of molting in the salmon louse and other copepods.


2021 ◽  
Author(s):  
Andrew Coates ◽  
Ingrid A Johnsen ◽  
Tim Dempster ◽  
Ben L Phillips
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document