Effects of the angiotensin II Ala-scan analogs in erythrocytic cycle of Plasmodium falciparum (in vitro) and Plasmodium gallinaceum (ex vivo)

2015 ◽  
Vol 153 ◽  
pp. 1-7 ◽  
Author(s):  
Adriana Farias Silva ◽  
Leandro de Souza Silva ◽  
Flávio Lopes Alves ◽  
Marcelo Der TorossianTorres ◽  
Ana Acacia de SáPinheiro ◽  
...  
Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1452
Author(s):  
Carolina C. Hoff ◽  
Mauro F. Azevedo ◽  
Adriana B. Thurler ◽  
Sarah El Chamy Maluf ◽  
Pollyana M. S. Melo ◽  
...  

Plasmodium falciparum, the most virulent of the human malaria parasite, is responsible for high mortality rates worldwide. We studied the M1 alanyl-aminopeptidase of this protozoan (PfA-M1), which is involved in the final stages of hemoglobin cleavage, an essential process for parasite survival. Aiming to help in the rational development of drugs against this target, we developed a new strain of P. falciparum overexpressing PfA-M1 without the signal peptide (overPfA-M1). The overPfA-M1 parasites showed a 2.5-fold increase in proteolytic activity toward the fluorogenic substrate alanyl-7-amido-4-methylcoumarin, in relation to the wild-type group. Inhibition studies showed that overPfA-M1 presented a lower sensitivity against the metalloaminopeptidase inhibitor bestatin and to other recombinant PfA-M1 inhibitors, in comparison with the wild-type strain, indicating that PfA-M1 is a target for the in vitro antimalarial activity of these compounds. Moreover, overPfA-M1 parasites present a decreased in vitro growth, showing a reduced number of merozoites per schizont, and also a decrease in the iRBC area occupied by the parasite in trophozoite and schizont forms when compared to the controls. Interestingly, the transgenic parasite displays an increase in the aminopeptidase activity toward Met-, Ala-, Leu- and Arg-7-amido-4-methylcoumarin. We also investigated the potential role of calmodulin and cysteine proteases in PfA-M1 activity. Taken together, our data show that the overexpression of PfA-M1 in the parasite cytosol can be a suitable tool for the screening of antimalarials in specific high-throughput assays and may be used for the identification of intracellular molecular partners that modulate their activity in P. falciparum.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1273
Author(s):  
Océane Delandre ◽  
Mathieu Gendrot ◽  
Isabelle Fonta ◽  
Joel Mosnier ◽  
Nicolas Benoit ◽  
...  

Background: Artemisinin-based combination therapy (ACT) was recommended to treat uncomplicated falciparum malaria. Unlike the situation in Asia where resistance to ACT has been reported, artemisinin resistance has not yet emerged in Africa. However, some rare failures with ACT or patients continuing to be parasitaemic on day 3 after ACT treatment have been reported in Africa or in travellers returning from Africa. Three mutations (G50E, R100K, and E107V) in the pfcoronin gene could be responsible for artemisinin resistance in Africa. Methods: The aims of this study were first to determine the prevalence of mutations in the pfcoronin gene in African P. falciparum isolates by Sanger sequencing, by targeting the 874 samples collected from patients hospitalised in France after returning from endemic areas in Africa between 2018 and 2019, and secondly to evaluate their association with in vitro reduced susceptibility to standard quinoline antimalarial drugs, including chloroquine, quinine, mefloquine, desethylamodiaquine, lumefantrine, piperaquine, and pyronaridine. Results: The three mutations in the pfcoronin gene (50E, 100K, and 107V) were not detected in the 874 P. falciparum isolates. Current data show that another polymorphism (P76S) is present in many countries of West Africa (mean prevalence of 20.7%) and Central Africa (11.9%) and, rarely, in East Africa (4.2%). This mutation does not appear to be predictive of in vitro reduced susceptibility to quinolines, including artemisinin derivative partners in ACT such as amodiaquine, lumefantrine, piperaquine, pyronaridine, and mefloquine. Another mutation (V62M) was identified at low prevalence (overall prevalence of 1%). Conclusions: The 76S mutation is present in many African countries with a prevalence above 10%. It is reassuring that this mutation does not confer in vitro resistance to ACT partners.


2011 ◽  
Vol 55 (9) ◽  
pp. 4461-4464 ◽  
Author(s):  
Jutta Marfurt ◽  
Ferryanto Chalfein ◽  
Pak Prayoga ◽  
Frans Wabiser ◽  
Enny Kenangalem ◽  
...  

ABSTRACTFerroquine (FQ; SSR97193), a ferrocene-containing 4-aminoquinoline derivate, has potentin vitroefficacy against chloroquine (CQ)-resistantPlasmodium falciparumand CQ-sensitiveP. vivax. In the current study,ex vivoFQ activity was tested in multidrug-resistantP. falciparumandP. vivaxfield isolates using a schizont maturation assay. Although FQ showed excellent activity against CQ-sensitive and -resistantP. falciparumandP. vivax(median 50% inhibitory concentrations [IC50s], 9.6 nM and 18.8 nM, respectively), there was significant cross-susceptibility with the quinoline-based drugs chloroquine, amodiaquine, and piperaquine (forP. falciparum,r= 0.546 to 0.700,P< 0.001; forP. vivax,r= 0.677 to 0.821,P< 0.001). The observedex vivocross-susceptibility is likely to reflect similar mechanisms of drug uptake/efflux and modes of drug action of this drug class. However, the potent activity of FQ against resistant isolates of bothP. falciparumandP. vivaxhighlights a promising role for FQ as a lead antimalarial against CQ-resistantPlasmodiumand a useful partner drug for artemisinin-based combination therapy.


2013 ◽  
Vol 13 (12) ◽  
pp. 1043-1049 ◽  
Author(s):  
Benoit Witkowski ◽  
Chanaki Amaratunga ◽  
Nimol Khim ◽  
Sokunthea Sreng ◽  
Pheaktra Chim ◽  
...  

1995 ◽  
Vol 14 (2) ◽  
pp. 209-226 ◽  
Author(s):  
C Klett ◽  
M Bader ◽  
M Schwemmle ◽  
D Ganten ◽  
E Hackenthal

ABSTRACT Several authors have shown that angiotensin II stimulates hepatic angiotensinogen synthesis in vivo, ex vivo and in vitro. In previous studies we have demonstrated that this effect of angiotensin II depends mainly on a transient inhibition of adenylyl cyclase and is the consequence of a stabilization of angiotensinogen mRNA. In the present study we describe the isolation of a polysomal 12 kDa protein which, in band shift and cross link assays, shows a specific affinity to the 3′ untranslated region (3′ UTR) of angiotensinogen mRNA and prevents enzymatic degradation of angiotensinogen mRNA in a cell-free incubation system. [32P]UTP-labelled or unlabelled 3′ fragments of angiotensinogen mRNA were synthesized on a transcription vector (pGEM5zf+) into which the corresponding DNA sequence was cloned after restriction from vector pRAG 16. Binding of the 12 kDa protein to the radioactively labelled 3′ UTR of angiotensinogen mRNA could be displaced by unlabelled 3′ UTR mRNA fragments but not by a renin mRNA of comparable length derived from the coding region, The RNA-binding protein appears to be derived from a higher molecular mass precursor (45 kDa) which is preferentially present under reducing conditions in vitro; the active low molecular mass form is evident in the absence of reducing agents. In a cross link experiment we established that a band shift signal which was obtained in the presence of the 45 kDa protein preparation exclusively depends on RNA binding of the active 12 kDa protein. In addition, a phosphorylation step may be involved in the activation of the 12 kDa protein, since its molecular mass and isoelectric point correlate with proteins which were phosphorylated in response to transient decreases of cAMP (induced by guanfacine or angiotensin II) or in response to a direct inhibition of protein kinase A by the cAMP antagonist Rp-cAMP. The importance of phosphorylation reactions for the stabilization of angiotensinogen mRNA was further assessed in a cell-free incubation system of rat liver parenchymal cells. These studies demonstrated that in the presence of acid phosphatase (1 U/ml) the half-life of angiotensinogen was significantly decreased. In the same incubation system the 12 kDa protein increased the half-life of endogenous as well as of exogenous angiotensinogen mRNA three- to fourfold, while no stabilizing effect was apparent when exogenous angiotensinogen mRNA from which the 3′ tail had been deleted was added. We concluded that an intracellular 12 kDa protein may play a crucial role in the angiotensin Il-induced stabilization of hepatic angiotensinogen mRNA and further suggest that this protein exerts its effect via binding to the 3′ UTR of angiotensinogen mRNA in response to a cAMP-dependent activation step.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Dakshnapriya Balasubbramanian ◽  
George Lambrinos ◽  
Vivian Cristofaro ◽  
Alexander Bigger-Allen ◽  
Beibei Wang ◽  
...  

Introduction: Neuropilin-1 (NRP1) is a transmembrane receptor present in vascular smooth muscle cells (VSMC) that mediates the inhibition of Rho signaling by binding the Class 3 Semaphorin (SEMA) ligand SEMA3A. Hypothesis: We hypothesize that loss of NRP1 in VSMC mitigates SEMA3A-induced Rho inhibition, thereby increasing vascular tone and blood pressure in vivo . Methods: Male and female adult mice (8-12 weeks) with inducible, smooth muscle cell-specific deletion of NRP1 (SM22a-Cre ERT2 X Nrp1 flox/flox ) were examined. Following recombination using 4-hydroxy tamoxifen (SM- NRP1 KO), systolic blood pressure (SBP) was measured using a tail cuff and compared to age- and sex-matched mice that did not receive tamoxifen (control). Aortic vascular reactivity and expression of key proteins in the Rho signaling cascade were measured using ex vivo tension myography and western blotting, respectively. Results: SBP was significantly increased in SM- NRP1 KO mice following recombination compared to control mice (SBP: 136.5 ± 10.9 vs 112.9 ± 5.6 mmHg; p=0.0006). Contractile responses in aortas of SM- NRP1 KO mice to phenylephrine (p=0.025), KCl (p=0.012), and the thromboxane agonist U44619 (p=0.019) were significantly enhanced compared to controls. Expression of total myosin light chain and LIMK-2 proteins were increased in SM- NRP1 KO compared to control aortas. In vitro , treatment of murine primary VSMC expressing NRP1 with SEMA3A decreased angiotensin II-induced Rho-GTP activation. Additionally, control and SM- NRP1 KO mice (starting at 2 weeks post-recombination) were administered angiotensin II (490 ng/kg/day) for 4 weeks. While there was no significant difference in SBP at weeks 1 and 2, SM- NRP1 KO mice had significantly lower SBP at weeks 3 and 4 following angiotensin II infusion compared to controls (Week 4 SBP: 150 ± 1.4 vs 130.5 ± 2.5 mmHg; p=0.02), suggesting a low ejection fraction and cardiac dysfunction in these mice. In support of this observation, mRNA expression of atrial natriuretic peptide was increased in hearts of angiotensin II-infused SM- NRP1 KO mice. Conclusion: Our data suggest that VSMC NRP1 regulates basal tone and blood pressure, and that loss of NRP1 causes hypertension and exacerbates cardiac dysfunction.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Hongxian WU ◽  
Xian Wu Cheng ◽  
Lina Hu ◽  
Chang-Ning Hao ◽  
Mutsuharu Hayashi ◽  
...  

Background: The interaction between the renin-angiotensin system and toll-like receptors (TLRs) in the pathogenesis of advanced atherosclerotic plaques is not well understood. We studied the effects of the renin inhibitor aliskiren on the progression of advanced atherosclerotic plaque in apolipoprotein E-deficient (ApoE –/– ) mice with a special focus on plaque neovessel formation. Methods and Results: Four-wk-old ApoE –/– mice were fed a high-fat diet for 8 wks, and the mice were randomly assigned to one of three groups and administered a vehicle, hydralazine, or aliskiren for an additional 12 wks. Aliskiren reduced the atherosclerotic plaque area and plaque neovessel density. It increased the plaque collagen and elastin contents, and reduced plasma angiotensin II levels and plaque macrophage infiltration and cathepsin S (CatS) protein. Aliskiren also decreased the levels of AT1R, gp91phox, TLR2, monocyte chemotactic protein-1, and CatS mRNAs in the aortic roots. Hydralazine had no beneficial vascular effects, although its administration resulted in the same degree of blood pressure reduction as aliskiren. CatS deficiency mimicked the aliskiren-mediated vasculoprotective effect in the ApoE –/– mice, but aliskiren showed no further benefits in ApoE –/– CatS –/– mice. In vitro , CatS mRNA expressions were induced by angiotensin II, and TLR2 silencing reduced CatS mRNA expression. Moreover, the genetic inhibition of CatS impaired the endothelial cell angiogenic action in vitro and ex vivo . Conclusion: Renin inhibition appears to inhibit advanced plaque neovessel formation in ApoE –/– mice and to decrease the vascular inflammatory action and extracellular matrix degradation, partly by reducing AT1R/TLR2-mediated CatS activation and activity, thus regressing advanced atherosclerotic plaques.


Sign in / Sign up

Export Citation Format

Share Document