Assessment of biogenic amine and nitrite production in low-salt Paocai during fermentation as affected by reused brine and fresh brine

2021 ◽  
Vol 41 ◽  
pp. 100958
Author(s):  
Nan Zhao ◽  
Haimei Lai ◽  
Yali Wang ◽  
Yuli Huang ◽  
Qiao Shi ◽  
...  
Food Control ◽  
2005 ◽  
Vol 16 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Jae-Hyun Kim ◽  
Dong-Ho Kim ◽  
Hyun-Joo Ahn ◽  
Hyun-Jin Park ◽  
Myung-Woo Byun

Author(s):  
G. L. Brown

Bismuth (Bi) stains nucleoproteins (NPs) by interacting with available amino and primary phosphate groups. These two staining mechanisms are distinguishable by glutaraldehyde crosslinking (Fig. 1,2).Isolated mouse liver nuclei, extracted with salt and acid solutions, fixed in either formaldehyde (form.) or gl utaraldehyde (glut.) and stained with Bi, were viewed to determine the effect of the extractions on Bi stainina. Solubilized NPs were analyzed by SDS-polyacrylamide gel electrophoresis.Extraction with 0.14 M salt does not change the Bi staining characteristics (Fig. 3). 0.34 M salt reduces nucleolar (Nu) staining but has no effect on interchromatinic (IC) staining (Fig. 4). Proteins responsible for Nu and glut.- insensitive IC staining are removed when nuclei are extracted with 0.6 M salt (Fig. 5, 6). Low salt and acid extraction prevents Bi-Nu staining but has no effect on IC staining (Fig. 7). When nuclei are extracted with 0.6 M salt followed by low salt and acid, all Bi-staining components are removed (Fig. 8).


2018 ◽  
Author(s):  
Timothy Duignan ◽  
Marcel Baer ◽  
Christopher Mundy

<div> <p> </p><div> <div> <div> <p>The surface tension of dilute salt water is a fundamental property that is crucial to understanding the complexity of many aqueous phase processes. Small ions are known to be repelled from the air-water surface leading to an increase in the surface tension in accordance with the Gibbs adsorption isotherm. The Jones-Ray effect refers to the observation that at extremely low salt concentration the surface tension decreases in apparent contradiction with thermodynamics. Determining the mechanism that is responsible for this Jones-Ray effect is important for theoretically predicting the distribution of ions near surfaces. Here we show that this surface tension decrease can be explained by surfactant impurities in water that create a substantial negative electrostatic potential at the air-water interface. This potential strongly attracts positive cations in water to the interface lowering the surface tension and thus explaining the signature of the Jones-Ray effect. At higher salt concentrations, this electrostatic potential is screened by the added salt reducing the magnitude of this effect. The effect of surface curvature on this behavior is also examined and the implications for unexplained bubble phenomena is discussed. This work suggests that the purity standards for water may be inadequate and that the interactions between ions with background impurities are important to incorporate into our understanding of the driving forces that give rise to the speciation of ions at interfaces. </p> </div> </div> </div> </div>


2012 ◽  
Vol 41 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Hee-Nam Jung ◽  
Hae-Ok Kim ◽  
Hae-Hyun Shim ◽  
Hyun-Sook Jung ◽  
Ok-Ja Choi

2014 ◽  
Vol 43 (6) ◽  
pp. 854-858 ◽  
Author(s):  
Yu-Jin Shin ◽  
Chang-Kwon Lee ◽  
Hyun-Jin Kim ◽  
Hyoun-Sung Kim ◽  
Han-Geuk Seo ◽  
...  

2020 ◽  
Vol 36 (6) ◽  
pp. 98-106
Author(s):  
E.I. Levitin ◽  
B.V. Sviridov ◽  
O.V. Piksasova ◽  
T.E. Shustikova

Currently, simple, rapid, and efficient techniques for DNA isolation from a wide range of organisms are in demand in biotechnology and bioinformatics. A key (and often limiting) step is the cell wall disruption and subsequent DNA extraction from the disintegrated cells. We have developed a new approach to DNA isolation from organisms with robust cell walls. The protocol includes the following steps: treatment of cells or tissue samples with ammonium acetate followed by cell lysis in low-salt buffer with the addition of SDS. Further DNA extraction is carried out according to standard methods. This approach is efficient for high-molecular native DNA isolation from bacteria, ascomycetes, yeast, and mammalian blood; it is also useful for express analysis of environmental microbial isolates and for plasmid extraction for two-hybrid library screening. express method for DNA isolation; ammonium salt treatment (в русских ключевых такой порядок), osmotic breakage of cells This study was financially supported by the NRC "Kurchatov Institute"-GOSNIIGENETIKA Kurchatov Genomic Center.


Sign in / Sign up

Export Citation Format

Share Document