cell wall disruption
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 36)

H-INDEX

18
(FIVE YEARS 4)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2683
Author(s):  
Tatsuji Hataya

Gene amplification techniques such as polymerase chain reaction (PCR) are widely used for the diagnosis of plant diseases caused by viruses and viroids. It is preferable that sample preparation methods for PCR or reverse transcription (RT) PCR are rapid, straightforward, and inexpensive. We previously reported a method for the extraction of nucleic acids without mechanical tissue grinding using a buffer containing potassium ethyl xanthogenate (PEX) to detect viroid RNAs. In the present report, the previous PEX method was improved and simplified. In the simplified PEX (SPEX) method, the process of PEX buffer treatment for plant cell wall disruption is improved to one step of incubation at 80 °C for 10 min, instead of three steps that took more than 26 min at 65 °C in the previous method. Total nucleic acids could be extracted from fresh, frozen, or dried leaves of a cultivar or wild species of tobacco, tomato, citron, hop plants, and pericarps of persimmon fruits by the SPEX method. Several RNA viruses and viroids were successfully detected from the extracted nucleic acids together with an internal mRNA by RT-PCR. The SPEX method may be useful for detecting not only viruses and viroids, but also other plant pathogens.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Andreas Bauer ◽  
Mirjana Minceva

AbstractThe biotechnological production of the carotenoid astaxanthin is done with the microalgae Haematococcus pluvialis (H. pluvialis). Under nutrient deficiency and light stress, H. pluvialis accumulates astaxanthin intracellularly and forms a resistant cyst cell wall that impedes direct astaxanthin extraction. Therefore, a complex downstream process is required, including centrifugation, mechanical cell wall disruption, drying, and supercritical extraction of astaxanthin with CO2. In this work, an alternative downstream process based on the direct extraction of astaxanthin from the algal broth into ethyl acetate using a centrifugal partition extractor (CPE) was developed. A mechanical cell wall disruption or germination of the cysts was carried out to make astaxanthin accessible to the solvent. Zoospores containing astaxanthin are released when growth conditions are applied to cyst cells, from which astaxanthin can directly be extracted into ethyl acetate. Energy-intensive unit operations such as spray-drying and extraction with supercritical CO2 can be replaced by directly extracting astaxanthin into ethyl acetate. Extraction yields of 85% were reached, and 3.5 g of oleoresin could be extracted from 7.85 g homogenised H. pluvialis biomass using a CPE unit with 244 mL column volume. A techno-economic analysis was done for a hypothetical H. pluvialis production facility with an annual biomass output of 8910 kg. Four downstream scenarios were examined, comparing the novel process of astaxanthin extraction from homogenised cyst cells and germinated zoospores via CPE extraction with the conventional industrial process using in-house or supercritical CO2 extraction via an external service provider. After 10 years of operation, the highest net present value (NPV) was determined for the CPE extraction from germinated zoospores.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1334
Author(s):  
Nivedhitha Kabeerdass ◽  
Ahmed Al Otaibi ◽  
Manikandan Rajendran ◽  
Ayyar Manikandan ◽  
Heba A. Kashmery ◽  
...  

In this article, the supernatant of the soil-borne pathogen Bacillus mn14 was used as the catalyst for the synthesis of AgNPs. The antibacterial and antifungal activity of Bs-AgNPs was evaluated, in which S. viridans and R. solani showed susceptibility at 70 µL and 100 µL concentrations. Enzyme properties of the isolates, according to minimal inhibitory action and a growth-enhancing hormone–indole acetic acid (IAA) study of the isolates, were expressed in TLC as a purple color with an Rf value of 0.7. UV/Vis spectroscopy revealed the presence of small-sized AgNPs, with a surface plasmon resonance (SPR) peak at 450 nm. The particle size analyzer identified the average diameter of the particles as 40.2 nm. The X-ray diffraction study confirmed the crystalline nature and face-centered cubic type of the silver nanoparticle. Scanning electron microscopy characterized the globular, small, round shape of the silver nanoparticle. AFM revealed the two-dimensional topology of the silver nanoparticle with a characteristic size ranging around 50 nm. Confocal microscopy showed the cell-wall disruption of S. viridans treated with Bs-AgNPs. High-content screening and compound microscopy revealed the destruction of mycelia of R. solani after exposure to Bs-AgNPs. Furthermore, the Bs-AgNPs cured sheath blight disease by reducing lesion length and enhancing root and shoot length in Oryza sativa seeds. This soil-borne pathogen Bacillus-mediated synthesis approach of AgNPs appears to be cost-efficient, ecofriendly, and farmer-friendly, representing an easy way of providing valuable nutritious edibles in the future.


2021 ◽  
Vol 11 (16) ◽  
pp. 7201
Author(s):  
Andreas Bauer ◽  
Mirjana Minceva

The microalgae Haematococcus pluvialis is used for the biotechnological production of astaxanthin. The red carotenoid accumulates in the cytoplasm under unfavorable conditions. Astaxanthin synthesis is associated with the transformation of motile vegetative cells into non-motile cyst cells. In the industrial process, after harvesting, the cyst cells are mechanically disrupted, dried, and finally, astaxanthin is extracted with supercritical CO2. The germination of the cyst cells represents an interesting alternative, replacing the mechanical cyst cell wall disruption. When cyst cells are exposed to favorable growth conditions, germination of the cyst cells occurs and zoospores are released after a certain time. These zoospores show a much weaker cell matrix compared to cyst cells. In this study, germination under phototrophic, mixotrophic, and heterotrophic conditions was examined. Glucose was used as the carbon source for mixotrophic and heterotrophic germination. Applying heterotrophic conditions, up to 80% of the cells were in the zoospore stage 49 h after the start of germination, and extraction yields of up to 50% were achieved using the solvent ethyl acetate for the extraction of astaxanthin from the algal broth containing zoospores. An extraction yield of up to 64% could be achieved by doubling the nitrate concentration and combining mixotrophic and heterotrophic cultivation.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 742
Author(s):  
Rosa Schettino ◽  
Michela Verni ◽  
Marta Acin-Albiac ◽  
Olimpia Vincentini ◽  
Annika Krona ◽  
...  

Brewers’ spent grain (BSG), the by-product of brewing, was subjected to a xylanase treatment followed by fermentation with Lactiplantibacillus plantarum PU1. Bioprocessed BSG has been used as ingredient to obtain a fortified semolina pasta which can be labeled as “high fiber” and “source of protein” according to the European Community Regulation No. 1924/2006. Compared to native BSG, the use of bioprocessed BSG led to higher protein digestibility and quality indices (essential amino acid index, biological value, protein efficiency ratio, nutritional index), as well as lower predicted glycemic index. Bioprocessing also improved the technological properties of fortified pasta. Indeed, brightfield and confocal laser scanning microscopy revealed the formation of a more homogeneous protein network, resulting from the degradation of the arabinoxylan structure of BSG, and the release of the components entrapped into the cellular compartments. The extensive cell wall disruption contributed to the release of phenols, and conferred enhanced antioxidant activity to the fortified pasta. The persistence of the activity was demonstrated after in vitro-mimicked digestion, evaluating the protective effects of the digested pasta towards induced oxidative stress in Caco-2 cells cultures. The fortified pasta showed a peculiar sensory profile, markedly improved by the pre-treatment, thus confirming the great potential of bioprocessed BSG as health-promoting food ingredient.


Author(s):  
Daryush Arabian

Microalgae have emerged as one of the most promising options for biodiesel production over the past few decades. Lipid extraction from microalgae for biodiesel production as a bottleneck of biodiesel production technology was the main purpose of this study. In this study different methods of the cell wall disruption were compared. Then, two methods of ultrasound and bead mill were used as methods of the cell wall disruption. The maximum lipid extracted by ultrasound was 17.10% and by bead mill was 15.16% (based on microalgae biomass dry weight). After the cell wall disruption of microalgae, for lipid extraction, chloroform-methanol solvent combination was used as a high extraction method and hexane-ethanol solvent combination was used as an environmentally friendly method. In this regard, the effect of solvent to biomass ratio, temperature and extraction time was investigated and the optimal results for chloroform-methanol solvent combination were 8 ml/g, 45°C and 60 minutes, respectively, and for hexane-ethanol combination were 6 ml/g, 35◦C and 73 minutes, respectively. Under these optimal conditions, the highest amount of extracted lipid from Chlorella vulgaris with a moisture content of 87.50%, and ultrasound as a cell wall disruption method were obtained 20.39% and 16.41% (based on microalgae dry weight) with a combination of chloroform-methanol solvents and hexane-ethanol respectively. Also the highest extraction rates of 17.63% and 13.85% were obtained for the combination of chloroform-methanol and hexane-ethanol solvents, respectively by bead milling as cell wall disruption method


2021 ◽  
Vol 11 (7) ◽  
pp. 3206
Author(s):  
Lorina I. Badger-Emeka ◽  
Promise Madu Emeka ◽  
Hairul Islam M. Ibrahim

Methicillin-resistant Staphylococcus aureus (MRSA) infection is detrimental to hospitalized patients. With diminishing choices of antibiotics and the worry about resistance to colistin in synergistic combined therapy, there are suggestions for the use of herbal derivatives. This investigation evaluated the synergistic effects of Nigella sativa (NS) in combination with beta-lactam (β-lactam) antibiotics on extreme drug-resistant (XDR) MRSA isolates. NS concentrations of 10, 7.5, 5.0, 2.5, 1.0, and 0.1 µg/mL, alone and in combination with β-lactam antibiotics, were used to determine the antimicrobial susceptibility of MRSA isolates by the well diffusion method. Time–kill assays were performed using a spectrophotometer, with time–kill curves plotted and synergism ascertained by the fractional inhibitory concentration (FIC). Scanning and transmission electron microscopy were used to gain insight into the mechanism of action of treated groups. Isolates were inhibited by the NS concentrations, with differences in the zones of inhibition being statistically insignificant at p < 0.05. There were statistically significant differences in the time–kill assay for the MRSA isolates. In addition, NS combined with augmentin showed better killing than oxacillin and cefuroxime. The mechanism of action shown by the SEM and TEM results revealed cell wall disruption, which probably created interference that led to bacterial lysis.


2021 ◽  
Vol 8 (3) ◽  
pp. 36
Author(s):  
Lavinia L. Ruta ◽  
Ileana C. Farcasanu

Copper is essential for life, but it can be deleterious in concentrations that surpass the physiological limits. Copper pollution is related to widespread human activities, such as viticulture and wine production. To unravel aspects of how organisms cope with copper insults, we used Saccharomyces cerevisiae as a model for adaptation to high but subtoxic concentrations of copper. We found that S. cerevisiae cells could tolerate high copper concentration by forming deposits on the cell wall and that the copper-containing deposits accumulated predominantly when cells were grown statically on media prepared with reducing sugars (glucose, galactose) as sole carbon source, but not on media containing nonreducing carbon sources, such as glycerol or lactate. Exposing cells to copper in liquid media under strong agitation prevented the formation of copper-containing deposits at the cell wall. Disruption of low-affinity copper intake through the plasma membrane increased the potential of the cell to form copper deposits on the cell surface. These results imply that biotechnology problems caused by high copper concentration can be tackled by selecting yeast strains and conditions to allow the removal of excess copper from various contaminated sites in the forms of solid deposits which do not penetrate the cell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco Javier Álvarez-Martínez ◽  
Juan Carlos Rodríguez ◽  
Fernando Borrás-Rocher ◽  
Enrique Barrajón-Catalán ◽  
Vicente Micol

AbstractAntimicrobial resistance poses a serious threat to human health worldwide. Plant compounds may help to overcome antibiotic resistance due to their potential resistance modifying capacity. Several botanical extracts and pure polyphenolic compounds were screened against a panel of eleven bacterial isolates with clinical relevance. The two best performing agents, Cistus salviifolius (CS) and Punica granatum (GP) extracts, were tested against 100 Staphylococcus aureus clinical isolates, which resulted in average MIC50 values ranging between 50–80 µg/mL. CS extract, containing hydrolyzable tannins and flavonoids such as myricetin and quercetin derivatives, demonstrated higher activity against methicillin-resistant S. aureus isolates. GP extract, which contained mostly hydrolyzable tannins, such as punicalin and punicalagin, was more effective against methicillin-sensitive S. aureus isolates. Generalized linear model regression and multiple correspondence statistical analysis revealed a correlation between a higher susceptibility to CS extract with bacterial resistance to beta-lactam antibiotics and quinolones. On the contrary, susceptibility to GP extract was related with bacteria sensitive to quinolones and oxacillin. Bacterial susceptibility to GP and CS extracts was linked to a resistance profile based on cell wall disruption mechanism. In conclusion, a differential antibacterial activity against S. aureus isolates was observed depending on antibiotic resistance profile of isolates and extract polyphenolic composition, which may lead to development of combinatorial therapies including antibiotics and botanical extracts.


Sign in / Sign up

Export Citation Format

Share Document