scholarly journals Complementarity and facilitation with respect to P acquisition do not drive overyielding by intercropping

2021 ◽  
Vol 265 ◽  
pp. 108127
Author(s):  
Chunjie Li ◽  
Ellis Hoffland ◽  
Wopke van der Werf ◽  
Junling Zhang ◽  
Haigang Li ◽  
...  
Keyword(s):  
Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1375-P ◽  
Author(s):  
REBECCA O. LA BANCA ◽  
LISA K. VOLKENING ◽  
LORI M. LAFFEL

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Jean Trap ◽  
Patricia Mahafaka Ranoarisoa ◽  
Usman Irshad ◽  
Claude Plassard

Plants evolve complex interactions with diverse soil mutualist organisms to enhance P mobilization from the soil. These strategies are particularly important when P is poorly available. It is still unclear how the soil P source (e.g., mineral P versus recalcitrant organic P) and its mobility in the soil (high or low) affect soil mutualist biological (ectomycorrhizal fungi, bacteria and bacterial-feeding nematodes) richness—plant P acquisition relationships. Using a set of six microcosm experiments conducted in growth chamber across contrasting P situations, we tested the hypothesis that the relationship between the increasing addition of soil mutualist organisms in the rhizosphere of the plant and plant P acquisition depends on P source and mobility. The highest correlation (R2 = 0.70) between plant P acquisition with soil rhizosphere biological richness was found in a high P-sorbing soil amended with an organic P source. In the five other situations, the relationships became significant either in soil conditions, with or without mineral P addition, or when the P source was supplied as organic P in the absence of soil, although with a low correlation coefficient (0.09 < R2 < 0.15). We thus encourage the systematic and careful consideration of the form and mobility of P in the experimental trials that aim to assess the role of biological complexity on plant P nutrition.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Yi Jin ◽  
Feng-Min Li

Both water stress and P deficit limit soybean seed yield, but the effects of water regimes and P application rates, their interaction on P status, acquisition, and partitioning, and their roles in yield performance have not been well-studied. Two soybean genotypes (Huangsedadou (HD) and Zhonghuang 30 (ZH)) with contrasting seed yield and root dry weight (DW) were used to investigate the P status, P acquisition, P partitioning, and yield formation under two water regimes (well-watered (WW) and cyclic water stress (WS)) and three P rates (0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil). The results show that increased P and water supply increased the seed yield, shoot and root DW and P concentrations and accumulations in different organs. Cultivar ZH had a significantly higher seed yield than HD at P60 and P120 under WS and at P0 under WW, but a lower seed yield at P60 and P120 under WW. Cultivar ZH had a significantly higher P harvest index and P acquisition efficiency, but a significantly lower shoot and root DW than HD. The interaction between water treatments and P rates had significant effects on leaf and stem P concentration. Cultivar ZH had significantly lower P partitioning to leaves and stems but significantly higher P partitioning to seeds than HD. The seed yield was positively correlated with leaf and seed P accumulations and P acquisition efficiency under WS. We conclude that (1) adequate water supply improved the P mobilization from leaves and stems at maturity, which may have improved the seed yield; and (2) the high P acquisition efficiency is coordination to high P partition to seeds to produce a high seed yield under water- and P-limited conditions.


2017 ◽  
Vol 422 (1-2) ◽  
pp. 479-493 ◽  
Author(s):  
Xiao-Fei Li ◽  
Cheng-Bao Wang ◽  
Wei-Ping Zhang ◽  
Le-Hua Wang ◽  
Xiu-Li Tian ◽  
...  

2021 ◽  
pp. 127993
Author(s):  
Chun Song ◽  
Clement Kyei Sarpong ◽  
Xiaofeng Zhang ◽  
Wenjing Wang ◽  
Lingfeng Wang ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
C. Nobile ◽  
D. Houben ◽  
E. Michel ◽  
S. Firmin ◽  
H. Lambers ◽  
...  

Abstract Crops have different strategies to acquire poorly-available soil phosphorus (P) which are dependent on their architectural, morphological, and physiological root traits, but their capacity to enhance P acquisition varies with the type of fertilizer applied. The objective of this study was to examine how P-acquisition strategies of three main crops are affected by the application of sewage sludges, compared with a mineral P fertilizer. We carried out a 3-months greenhouse pot experiment and compared the response of P-acquisition traits among wheat, barley and canola in a soil amended with three sludges or a mineral P fertilizer. Results showed that the P-acquisition strategy differed among crops. Compared with canola, wheat and barley had a higher specific root length and a greater root carboxylate release and they acquired as much P from sludge as from mineral P. By contrast, canola shoot P content was greater with sludge than with mineral P. This was attributed to a higher root-released acid phosphatase activity which promoted the mineralization of sludge-derived P-organic. This study showed that contrasted P-acquisition strategies of crops allows increased use of renewable P resources by optimizing combinations of crop and the type of P fertilizer applied within the cropping system.


Metallomics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 597-612 ◽  
Author(s):  
Suraj Kumar Mandal ◽  
Rahi Adhikari ◽  
Anjaney Sharma ◽  
Monika Chandravanshi ◽  
Prerana Gogoi ◽  
...  

Acquisition of different metal ions by metal uptake ABC transporters of Thermus thermophilus HB8 for accomplishing its various cellular functions.


Sign in / Sign up

Export Citation Format

Share Document