Effect of mineral N fertilizer and organic input on maize yield and soil water content for assessing optimal N and irrigation rates in Central Kenya

2022 ◽  
Vol 277 ◽  
pp. 108420
Author(s):  
Stephen Okoth Aluoch ◽  
Zhuoting Li ◽  
Xiaoxin Li ◽  
Chunsheng Hu ◽  
David M. Mburu ◽  
...  
1984 ◽  
Vol 103 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Siu M. T. Saito ◽  
Maria Nazareth S. Montanheiro ◽  
R. L. Victoria ◽  
K. Reichardt

SummarySoil water content affected the nodulation and N2 fixation of Phaseolus vulgaris by Rhizobium phaseoli and the utilization of mineral N by plants. Plants grown in wet soil produced twice as much as those grown on dry soils. Nodule weight and activity were five to ten times greater than those from dry soils. At 45 days, N additions inhibited nodulation, but this effect was partially diminished in wet soils.The maximum N utilization from fertilizer to produce dry matter did not correspond to maximum N utilization by pods.


1990 ◽  
Vol 20 (9) ◽  
pp. 1490-1497 ◽  
Author(s):  
P. J. Smethurst ◽  
E. K. S. Nambiar

The effects of clear-felling and slash removal on the distribution of organic matter and nutrients, fluxes of mineral N, and soil water and temperature were studied in a 37-year-old Pinusradiata D. Don plantation, on a sandy Podzol in southeastern Australia. Slash, litter, and the top 30 cm of soil combined contained 1957 kg N•ha−1, of which slash and litter contained 12 and 25%, respectively. Therefore, loss of slash and litter due to burning or other intensive site preparation practices would substantially reduce the N capital at the site. During the first 18 months after clear-felling, soil water content in the clear-felled area was up to 50% higher than in the uncut plantation, but there were only minor differences in soil temperature. Slash removal decreased the water content of litter, but had little effect on the water content or temperature of the soil. In the uncut plantation, N mineralized in litter and soil was completely taken up by the trees. Following clear-felling, rates of N mineralization increased in litter after 4 months, and in soil after 12 months, but changes were less pronounced with slash removal. After clear-felling, increased mineralization and the absence of trees (no uptake) led to increased concentrations of mineral N in both litter and soil, 64–76% of which was leached below the 30 cm soil depth prior to replanting. Despite leaching, concentrations of mineral N after clear-felling remained higher than those in the uncut plantation for at least 3 years.


1998 ◽  
Vol 49 (3) ◽  
pp. 345 ◽  
Author(s):  
G. C. Anderson ◽  
I. R. P. Fillery ◽  
F. X. Dunin ◽  
P. J. Dolling ◽  
S. Asseng

Quantification of nitrate (NO-3) leaching is fundamental to understanding the efficiency with which plants use soil-derived nitrogen (N). A deep sand located in the northern wheatbelt of Western Australia was maintained under a lupin (Lupinus angustifolius)-wheat (Triticum aestivum) and a subterranean clover (Trifolium subterraneum) based annual pasture-wheat rotation from 1994to 1996. Fluxes of water and NO-3 through, and beyond, the root-zone were examined. Drainage was calculated on a daily basis from measurements of rainfall, evapotranspiration, and the change in soil water content to a depth of 1·5 m. Evapotranspiration was estimated from Bowen ratio measurements,and soil water content was determined by time domain reflectrometry. Soil was sampled in layers to1·5 m at the onset of winter rains and analysed for NO-3 . Ceramic suction cups were installed at 0·25, 0·4, 0·6, 0·8, 1·0, 1·2, and 1·4 m to sample soil solution from June to mid August. The NO-3 leached from each layer was computed by multiplying the daily drainage through each layer by the estimated concentration of NO-3 within the layer. The estimated concentration of NO-3 in a layer was calculated by taking into account NO-3 either entering that layer through mineralisation and leachingor leaving the layer through plant uptake. Mineral N was added to the surface 0·2 m in accordance with measured rates of net N mineralisation, and daily N uptake was calculated from the measured above-ground plant N derived from soil N. Root sampling was undertaken to determine root lengthdensity under pastures, lupin, and wheat. Cumulative drainage below 1·5 m was similar under wheat and lupin, and accounted for 214 mmfrom 11 May to 15 August 1995 and 114 mm from 2 July to 15 September 1996. The cumulative evapotranspiration (Ea) over these periods was 169 mm from a wheat crop in 1995, and 178 mm from a lupin crop in 1996. The amount of NO-3 in soil at the start of the growing season was afiected by previous crop, with a lower range following wheat (31-68 kg N/ha) than following legumes (40-106 kgN/ha). These large quantities of NO-3 in the soil at the break of the season contributed substantially to NO-3 leaching. Leaching of NO-3 below 1·5 m in wheat crops accounted for 40-59 kg N/ha where these followed either lupin or pasture. In contrast, less NO-3 was found to leach below 1·5 m in pastures (17-28 kg N/ha). Greater N uptake by capeweed (Arctotheca calendula L.) than by either wheat or lupin was the main reason for the lower amount of NO-3 leached in pastures.


Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 105 ◽  
Author(s):  
Rong Li ◽  
Xianqing Hou ◽  
Zhikuan Jia ◽  
Qingfang Han ◽  
Baoping Yang

Precipitation is the major factor limiting crop growth in the semi-arid Loess Plateau region of China. Ridge-and-furrow rainfall harvesting systems (RFRHS) with mulches are used to increase water availability to crops, thereby improving and stabilising agricultural production in the semi-arid region of China. We conducted a field experiment from 2007 to 2010 in the Weibei Highlands of China, to determine the influence of RFRHS with different mulching patterns on soil water content, temperature, water-use efficiency, and maize yield (Zea mays L.). Ridges were covered with standard plastic film in all RFRHS treatments, while different furrow treatments were mulched with standard plastic film (PP), biodegradable film (PB), maize straw (PS), or liquid film (PL), or left uncovered (P). A conventional flat treatment without mulching was used as the control. In the early stage of maize growth, the topsoil temperature (5–20 cm) under PP and PB was significantly (P < 0.05) higher than under the control, whereas the soil temperature under PS was significantly (P < 0.05) lower than under the control. Treatments PP, PB, and PS also significantly improved soil water content during early growth stages. There was no significant difference in soil water content between PS and the control during middle and late growth stages. However, the soil water content in the deep soil layers with PP and PB was less than that of the control. Soil temperature and soil water content of PL and P were slightly higher than the control during the whole growing season. Higher maize yield and water-use efficiency was found with PP, PB, and PS. Compared with the control, the 4-year average maize yield with PP, PB, and PS was significantly (P < 0.05) increased, by 35, 35, and 34%, while the average water-use efficiency increased by 30, 31, and 29%, respectively. Net income was highest with PS, followed by PB, where the 4-year average net income increased by 2779 and 2752 Chinese yuan (CNY) ha–1, respectively, compared with the control. Soil water and temperature conditions were improved, while the maize yield and net income were increased, when ridges were covered with standard plastic film and the furrows were mulched with either biodegradable film or straw. Therefore, these two treatments are considered most efficient for maize production in the drought-prone, semi-humid region of the Loess Plateau, China.


2015 ◽  
Vol 29 (8) ◽  
pp. 2837-2853 ◽  
Author(s):  
Seyed Hamid Ahmadi ◽  
Elnaz Mosallaeepour ◽  
Ali Akbar Kamgar-Haghighi ◽  
Ali Reza Sepaskhah

1995 ◽  
Vol 46 (4) ◽  
pp. 821 ◽  
Author(s):  
GN Mundy

A 15N study with microplots was conducted to determine the effect of initial soil water content and of water application on the recovery of 15N-labelled urea applied at 60 kg N/ha to a paspalum-dominant pasture. A second experiment with the same pasture type investigated the effects of individual urea granules on soil pH and mineral nitrogen (N) after application to a moist soil with and without follow up rain and to wet soil without follow up rain. The 15N balance showed that initial soil water content and 10 mm of simulated rainfall affected the recovery of 15N in the soil/pasture. Fertilizer recovery was lowest (79%) from dry soil (evaporation minus rainfall (ER) 50 mm) without rainfall, but when the initial soil water (ER 25 mm) was higher, the recovery of fertilizer was greater. Simulated rainfall (10 mm) after urea application to the dry soil increased urea recovery to 90%. The recovery of applied 15 N was greater than 90% following the application of the urea to saturated soil (E-R 0 mm) and was comparable to the recommended procedure of irrigation after application. In experiment 2, the initial soil water content and follow up rain (10 mm) were important factors affecting soil pH and mineral N concentrations at urea granule sites after urea was applied to soil. Urea increased soil pH of granule sites to more than 8.5 in moist soil, but with 10 mm of rain or with wet soil, pH only reached 7.6. Similar effects with soil mineral N were also measured. The effects of these changes in pH and mineral N are discussed in relation to recovery of urea applied to pasture soil.


1998 ◽  
Vol 49 (3) ◽  
pp. I

Quantification of nitrate (NO-3) leaching is fundamental to understanding the efficiency with which plants use soil-derived nitrogen (N). A deep sand located in the northern wheatbelt of Western Australia was maintained under a lupin (Lupinus angustifolius)-wheat (Triticum aestivum) and a subterranean clover (Trifolium subterraneum) based annual pasture-wheat rotation from 1994to 1996. Fluxes of water and NO-3 through, and beyond, the root-zone were examined. Drainage was calculated on a daily basis from measurements of rainfall, evapotranspiration, and the change in soil water content to a depth of 1·5 m. Evapotranspiration was estimated from Bowen ratio measurements,and soil water content was determined by time domain reflectrometry. Soil was sampled in layers to1·5 m at the onset of winter rains and analysed for NO-3 . Ceramic suction cups were installed at 0·25, 0·4, 0·6, 0·8, 1·0, 1·2, and 1·4 m to sample soil solution from June to mid August. The NO-3 leached from each layer was computed by multiplying the daily drainage through each layer by the estimated concentration of NO-3 within the layer. The estimated concentration of NO-3 in a layer was calculated by taking into account NO-3 either entering that layer through mineralisation and leachingor leaving the layer through plant uptake. Mineral N was added to the surface 0·2 m in accordance with measured rates of net N mineralisation, and daily N uptake was calculated from the measured above-ground plant N derived from soil N. Root sampling was undertaken to determine root lengthdensity under pastures, lupin, and wheat. Cumulative drainage below 1·5 m was similar under wheat and lupin, and accounted for 214 mmfrom 11 May to 15 August 1995 and 114 mm from 2 July to 15 September 1996. The cumulative evapotranspiration (Ea) over these periods was 169 mm from a wheat crop in 1995, and 178 mm from a lupin crop in 1996. The amount of NO-3 in soil at the start of the growing season was afiected by previous crop, with a lower range following wheat (31-68 kg N/ha) than following legumes (40-106 kgN/ha). These large quantities of NO-3 in the soil at the break of the season contributed substantially to NO-3 leaching. Leaching of NO-3 below 1·5 m in wheat crops accounted for 40-59 kg N/ha where these followed either lupin or pasture. In contrast, less NO-3 was found to leach below 1·5 m in pastures (17-28 kg N/ha). Greater N uptake by capeweed (Arctotheca calendula L.) than by either wheat or lupin was the main reason for the lower amount of NO-3 leached in pastures.


Sign in / Sign up

Export Citation Format

Share Document