Minimum tillage and vegetative barrier effects on crop yields in relation to soil water content in the Central Kenya highlands

2012 ◽  
Vol 132 ◽  
pp. 129-138 ◽  
Author(s):  
S.N. Guto ◽  
N. de Ridder ◽  
K.E. Giller ◽  
P. Pypers ◽  
B. Vanlauwe
2014 ◽  
Vol 65 (7) ◽  
pp. 602 ◽  
Author(s):  
W. H. Vance ◽  
R. W. Bell ◽  
C. Johansen ◽  
M. E. Haque ◽  
A. M. Musa ◽  
...  

The time of sowing chickpea (Cicer arietinum L.) in the High Barind Tract of north-west Bangladesh is critical to crop success. To ensure adequate emergence and subsequent crop growth, chickpea relies on residual soil moisture stored in the profile after rice (Oryza sativa L.) cultivated in the preceding rainy season. With the development of mechanised, one-pass minimum tillage sowing, the time between rice harvest and chickpea sowing is decreased, and temperature constraints that limit biomass and/or pod formation and filling may be avoided. Minimum tillage may also limit evaporation from the soil surface compared with traditional, full cultivation procedures. The objective of this study was to identify the optimum sowing time to achieve adequate crop establishment and limit exposure of the chickpea crop to terminal drought and heat stress later in the growing season. Over three experimental seasons, chickpea sowing dates were spread from 22 November to 22 December. Soil water content, crop growth and temperature were monitored to determine the optimum sowing time. Over all seasons and sowing dates, the volumetric soil water content in the seedbed under minimum tillage remained within 17–34%, a range non-limiting for chickpea establishment in glasshouse and field experiments. Late planting (after 10 December) exposed seedlings to low temperatures (<15°C), which limited biomass formation and extended the vegetative growth phase into periods with high maximum temperatures (>35°C), resulting in unfilled pods and depressed grain yield. The preferred sowing time was determined to be 30 November to 10 December to reduce the risk of high temperatures and low soil water content during chickpea reproductive growth causing terminal heat and drought stress, respectively. Mechanised sowing in one operation allows farmers to optimise their time of sowing to match seed requirements for soil water at emergence and may assist farmers to avoid temperature stresses (both low and high) that constrain chickpea vegetative and reproductive growth.


2014 ◽  
Vol 6 (4) ◽  
pp. 125 ◽  
Author(s):  
Anne Karuma ◽  
Peter Mtakwa ◽  
Nyambilila Amuri ◽  
Charles K. Gachene ◽  
Patrick Gicheru

Soil water conservation through tillage is one of the appropriate ways of addressing soil moisture deficit in rainfed agriculture. This study evaluated the effects of tillage practices on soil moisture conservation and crop yields in Mwala District, Eastern Kenya during the long rains (LR) and short rains (SR) of 2012/13. Six tillage systems: Disc plough (MB), Disc plough and harrowing (MBH), Ox-ploughing (OX), Subsoiling – ripping (SR), Hand hoe and Tied Ridges (HTR) and Hand hoe only (H) and, three cropping systems namely, sole maize, sole bean and maize - bean intercrop, were investigated in a split-plot design with four replicates. Data on soil water content was monitored at different weeks after planting and the crop yields at end of each growing season. A three-season average shows that soil water content and crop yields were higher in conventional tillage methods compared to the conservation tillage methods. Long term tillage experiments are thus required at different locations, under various environmental and soil conditions to validate the study findings.


2002 ◽  
Vol 42 (6) ◽  
pp. 763 ◽  
Author(s):  
R. A. Sudmeyer ◽  
D. J. M. Hall ◽  
J. Eastham ◽  
M. A. Adams

This paper examines the effect severing lateral tree roots (root pruning) has on crop and tree growth and soil water content at 2 sites in the south-west of Western Australia. Crop and tree growth and soil water content were assessed in a Pinus pinaster windbreak system growing on 0.45–1.00 m of sand over clay, and crop growth was assessed adjacent to Eucalyptus globulus windbreaks growing on 4–5 m of sand. Crop yield was depressed by 23–52% within 2.5 times the tree height (H) of unpruned pines and by 44% within 2.5 H of pruned eucalypts. Depressed yields made cropping uneconomical within 1.5 H of the eucalypts and 1 H of the pines. Root pruning most improved crop yields where lateral tree roots were confined close to the soil surface and decreased in effectiveness as the depth to confining layer (clay) increased. Crop losses within 2.5 H of the pines were reduced from 39 to 14% in the year the trees were root pruned and were 25% 1 year after root pruning. Subsequent root pruning of the eucalypts did not improve crop yield. While root pruning severed lateral pine roots, tree growth was not significantly reduced. The principal cause of reduced crop yield near the trees appeared to be reduced soil moisture in the area occupied by tree roots. Competition for nutrients and light appeared to have little effect on crop yield. Root pruning can spatially separate tree and crop roots where the tree roots are confined close to the surface, and significantly improve crop yields without reducing tree growth.


2013 ◽  
Vol 33 (4) ◽  
pp. 748-757 ◽  
Author(s):  
Moacir T. de Moraes ◽  
Henrique Debiasi ◽  
Julio C. Franchini ◽  
Vanderlei R. da Silva

Soil compaction caused by machinery traffic reduces crop yields. This study aimed to evaluate the effects of intensive traffic, and the soil water content, on the soil penetration resistance (PR) of a Rhodic Eutrudox (Distroferric Red Latosol, Brazilian Classification), managed under no-tillage (NT). The experiment consisted of six treatments: NT with recent chiseling, NT without additional compaction, and NT with additional compaction by 4, 8, 10 and 20 passes of a harvester with a weight of 100 kN (70 kN on the front axle). Undisturbed soil samples were collected at 5.5-10.5 cm and 13.5-18.5 cm depth to quantify the soil bulk density (BD). The PR was assessed in four periods, using an impact penetrometer, inserted in the soil to a depth of 46 cm. The effect of traffic intensities on the PR was small when this variable was assessed with the soil in the plastic consistency. Differences in PR among treatments increased as the soil water content decreased. The increase in the values of PR and BD was higher in the first passes, but the increase in the number of traffics resulted in deeper soil compaction. The machinery traffic effects on PR are better characterized in the friable soil consistency.


2022 ◽  
Vol 277 ◽  
pp. 108420
Author(s):  
Stephen Okoth Aluoch ◽  
Zhuoting Li ◽  
Xiaoxin Li ◽  
Chunsheng Hu ◽  
David M. Mburu ◽  
...  

Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document