scholarly journals Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-α in human osteoarthritic chondrocytes

FEBS Letters ◽  
2007 ◽  
Vol 581 (9) ◽  
pp. 1928-1932 ◽  
Author(s):  
Seong-Su Nah ◽  
In-Young Choi ◽  
Bin Yoo ◽  
Yong Gil Kim ◽  
Hee-Bom Moon ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chih-Pei Lin ◽  
Po-Hsun Huang ◽  
Chi-Yu Chen ◽  
Meng-Yu Wu ◽  
Jia-Shiong Chen ◽  
...  

AbstractDiabetes is a complex disease characterized by hyperglycemia, dyslipidemia, and insulin resistance. Plasma advanced glycation end products (AGEs) activated the receptor for advanced glycation end products (RAGE) and the activation of RAGE is implicated to be the pathogenesis of type 2 diabetic mellitus (T2DM) patient vascular complications. Sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, is a new oral hypoglycemic agent for the treatment of T2DM. However, the beneficial effects on vascular calcification remain unclear. In this study, we used a high-fat diet (HFD)-fed low-density lipoprotein receptor deficiency (LDLR−/−) mice model to investigate the potential effects of sitagliptin on HFD-induced arterial calcification. Mice were randomly divided into 3 groups: (1) normal diet group, (2) HFD group and (3) HFD + sitagliptin group. After 24 weeks treatment, we collected the blood for chemistry parameters and DPP4 activity measurement, and harvested the aorta to evaluate calcification using immunohistochemistry and calcium content. To determine the effects of sitagliptin, tumor necrosis factor (TNF)-α combined with S100A12 was used to induce oxidative stress, activation of nicotinamide adenine dinucleotide phosphate (NADPH), up-regulation of bone markers and RAGE expression, and cell calcium deposition on human aortic smooth muscle cells (HASMCs). We found that sitagliptin effectively blunted the HFD-induced artery calcification and significantly lowered the levels of fasting serum glucose, triglyceride (TG), nitrotyrosine and TNF-α, decreased the calcium deposits, and reduced arterial calcification. In an in-vitro study, both S100A12 and TNF-α stimulated RAGE expression and cellular calcium deposits in HASMCs. The potency of S100A12 on HASMCs was amplified by the presence of TNF-α. Sitagliptin and Apocynin (APO), an NADPH oxidase inhibitor, inhibited the TNF-α + S100A12-induced NADPH oxidase and nuclear factor (NF)-κB activation, cellular oxidative stress, RAGE expression, osteo transcription factors expression and calcium deposition. In addition, treatment with sitagliptin, knockdown of RAGE or TNF-α receptor blunted the TNF-α + S100A12-induced RAGE expression. Our findings suggest that sitagliptin may suppress the initiation and progression of arterial calcification by inhibiting the activation of NADPH oxidase and NF-κB, followed by decreasing the expression of RAGE.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hui Zhang ◽  
Yan-Fei Mao ◽  
Ying Zhao ◽  
Dun-Feng Xu ◽  
Yan Wang ◽  
...  

Dysregulation of matrix metalloproteinase- (MMP-) 9 is implicated in the pathogenesis of acute lung injury (ALI). However, it remains controversial whether MMP-9 improves or deteriorates acute lung injury of different etiologies. The receptor for advanced glycation end products (RAGE) plays a critical role in the pathogenesis of acute lung injury. MMPs are known to mediate RAGE shedding and release of soluble RAGE (sRAGE), which can act as a decoy receptor by competitively inhibiting the binding of RAGE ligands to RAGE. Therefore, this study is aimed at clarifying whether and how pulmonary knockdown of MMP-9 affected sepsis-induced acute lung injury as well as the release of sRAGE in a murine cecal ligation and puncture (CLP) model. The analysis of GEO mouse sepsis datasets GSE15379, GSE52474, and GSE60088 revealed that the mRNA expression of MMP-9 was significantly upregulated in septic mouse lung tissues. Elevation of pulmonary MMP-9 mRNA and protein expressions was confirmed in CLP-induced mouse sepsis model. Intratracheal injection of MMP-9 siRNA resulted in an approximately 60% decrease in pulmonary MMP-9 expression. It was found that pulmonary knockdown of MMP-9 significantly increased mortality of sepsis and exacerbated sepsis-associated acute lung injury. Pulmonary MMP-9 knockdown also decreased sRAGE release and enhanced sepsis-induced activation of the RAGE/nuclear factor-κB (NF-κB) signaling pathway, meanwhile aggravating sepsis-induced oxidative stress and inflammation in lung tissues. In addition, administration of recombinant sRAGE protein suppressed the activation of the RAGE/NF-κB signaling pathway and ameliorated pulmonary oxidative stress, inflammation, and lung injury in CLP-induced septic mice. In conclusion, our data indicate that MMP-9-mediated RAGE shedding limits the severity of sepsis-associated pulmonary edema, inflammation, oxidative stress, and lung injury by suppressing the RAGE/NF-κB signaling pathway via the decoy receptor activities of sRAGE. MMP-9-mediated sRAGE production may serve as a self-limiting mechanism to control and resolve excessive inflammation and oxidative stress in the lung during sepsis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Luanqian Hu ◽  
Yuqi Chen ◽  
Tingting Chen ◽  
Dan Huang ◽  
Shihua Li ◽  
...  

Objective: To investigate the mechanism of Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson (SC) and Patrinia scabiosifolia (PS) against Pelvic Inflammatory Disease with Dampness-Heat Stasis Syndrome via network pharmacological approach and experimental validation.Methods: The active compounds with OB ≥ 30% and DL ≥ 0.18 were obtained from TCMSP database and further confirmed by literature research. The targets of the compounds and disease were acquired from multiple databases, such as GeneCards, CTD and TCMSP database. The intersection targets were identified by Venny software. Cytoscape 3.7.0 was employed to construct the protein-protein interaction (PPI) network and compound-target network. Moreover, GO enrichment and KEGG pathway analysis were analyzed by DAVID database. Finally, CCK-8, Griess assay and a cytometric bead array (CBA) immunoassay were used for experimental validation by detecting the influence of the active compounds on proliferation of macrophage, release of NO and TNF-α after LPS treatment.Results: 9 bioactive compounds were identified from SC and PS. Those compounds corresponded to 134 targets of pelvic inflammatory disease with dampness-heat stasis syndrome. The targets include vascular endothelial growth factor A (VEGFA), von willebrand factor (VWF), interleukin 6 (IL6), tumor necrosis factor (TNF) and nuclear transcription factor 1 (NFκB1). They act on the signaling pathways like advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE), focal adhesion (FA), Toll-like receptor (TLR) and nuclear transcription factor κB (NF-κB). In addition, by in vitro validation, the selected active components of SC and PS such as acacetin, kaempferol, linarin, isovitexin, sinoacutine could significantly inhibit the release of NO induced by LPS, respectively. Moreover, different dose of acacetin, kaempferol, isovitexin and sinoacutine significantly inhibits the TNF-α production.Conclusion: This study provides solid evidence for the anti-inflammatory mechanism of SC and PS against pelvic inflammatory disease with dampness-heat stasis syndrome, which will provide a preliminary evidence and novelty ideas for future research on the two herbs.


Mutagenesis ◽  
2020 ◽  
Vol 35 (3) ◽  
pp. 291-297
Author(s):  
Permal Deo ◽  
Varinderpal S Dhillon ◽  
Wai Mun Lim ◽  
Emma L Jaunay ◽  
Leigh Donnellan ◽  
...  

Abstract This study investigated the effect of dietary sugars and advanced glycation end-products (AGE) on telomere dynamics in WIL2-NS cells. Dietary sugars [glucose (Glu) and fructose (Fru); 0.1 M each] were incubated with bovine serum albumin (BSA) (10 mg/ml) at 60 ± 1°C for 6 weeks to generate AGE-BSA. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed total AGE levels as 87.74 ± 4.46 nmol/mg and 84.94 ± 4.28 nmol/mg respectively in Glu-BSA and Fru-BSA model. Cell treatment studies using WIL2-NS cells were based on either glucose, fructose (each 2.5–40 mM) or AGE-BSA (200–600 µg/ml) in a dose-dependent manner for 9 days. Telomere length (TL) was measured using qPCR. Nitric oxide (NO) production and tumour necrosis factor-α (TNF-α) levels were measured in WIL2-NS culture medium. An increasing trend for TNF-α and NO production was observed with higher concentration of glucose (R2 = 0.358; P = 0.019; R2 = 0.307; P = 0.027) and fructose (R2 = 0.669; P = 0.001; R2 = 0.339; P = 0.006). A decreasing trend for TL (R2 = 0.828; P = 0.000), and an increasing trend for NO production (R2 = 0.352; P = 0.031) were observed with increasing Glu-BSA concentrations. Fru-BSA treatment did not show significant trend on TL (R2 = 0.135; P = 0.352) with increasing concentration, however, a significant reduction was observed at 600 µg/ml (P < 0.01) when compared to BSA treatment. No trends for TNF-α levels and a decreasing trend on NO production (R2 = 0.5201; P = 0.019) was observed with increasing Fru-BSA treatment. In conclusion, this study demonstrates a potential relationship between dietary sugars, AGEs and telomere attrition. AGEs may also exert telomere shortening through the production of pro-inflammatory metabolites, which ultimately increase the risk of diabetes complications and age-related disease throughout lifespan.


2008 ◽  
Vol 65 (8) ◽  
pp. 437-440 ◽  
Author(s):  
Andrej Zeyfang

Diabetes mellitus ist mit einer Prävalenz von etwa 25% bei den 75 bis 80-Jährigen eine der größten Alterserkrankungen. Es besteht eine starke Wechselwirkung zwischen dem Vorliegen und der Einstellung eines Diabetes und der Ausprägung geriatrischer Syndrome. Dass ältere Menschen mit Diabetes stärker unter geriatrischen Syndromen leiden als Gleichaltrige ohne Diabetes ist eine Beobachtung, die zunehmend mit den Erkenntnissen der molekularen Basis von «Frailty» erklärt werden kann. So spielen die «advanced glycation end products» (AGEs), entzündliche Zytokine wie IL-6 oder TNF-α oder auch Proteinkatabolismus bei Insulinmangel eine wichtige Rolle. Möglicherweise lässt sich durch eine bessere Diabetesbehandlung, insbesondere durch die anabole Wirkung der Insulintherapie, Frailty aufhalten oder vermeiden.


Sign in / Sign up

Export Citation Format

Share Document