The role of Mac-1 (CD11b/CD18) in osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand

FEBS Letters ◽  
2008 ◽  
Vol 582 (21-22) ◽  
pp. 3243-3248 ◽  
Author(s):  
Hidetaka Hayashi ◽  
Ken-ichi Nakahama ◽  
Takahiro Sato ◽  
Takehiko Tuchiya ◽  
Yasuyuki Asakawa ◽  
...  
Endocrinology ◽  
2008 ◽  
Vol 149 (7) ◽  
pp. 3688-3697 ◽  
Author(s):  
Laurence Duplomb ◽  
Marc Baud’huin ◽  
Céline Charrier ◽  
Martine Berreur ◽  
Valérie Trichet ◽  
...  

Osteoclasts are bone-resorptive cells that differentiate from hematopoietic precursors upon receptor activator of nuclear factor κB ligand (RANKL) activation. Previous studies demonstrated that IL-6 indirectly stimulates osteoclastogenesis through the production of RANKL by osteoblasts. However, few data described the direct effect of IL-6 on osteoclasts. To investigate this effect, we used several models: murine RAW264.7 cells, mouse bone marrow, and human blood monocytes. In the three models used, the addition of IL-6 inhibited RANKL-induced osteoclastogenesis. Furthermore, IL-6 decreased the expression of osteoclast markers and up-modulated macrophage markers. To elucidate this inhibition, signal transducer and activator of transcription (STAT) 3, the main signaling molecule activated by IL-6, was analyzed. Addition of two STAT3 inhibitors completely abolished RANKL-induced osteoclastogenesis, revealing a key role of STAT3. We demonstrated that a basal level of phosphorylated-STAT3 on Serine727 associated with an absence of phosphorylation on Tyrosine705 is essential for osteoclastogenesis. Furthermore, a decrease of Serine727 phosphorylation led to an inhibition of osteoclast differentiation, whereas an increase of Tyrosine705 phosphorylation upon IL-6 stimulation led to the formation of macrophages instead of osteoclasts. In conclusion, we showed for the first time that IL-6 inhibits RANKL-induced osteoclastogenesis by diverting cells into the macrophage lineage, and demonstrated the functional role of activated-STAT3 and its form of phosphorylation in the control of osteoclastogenesis.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4335-4343 ◽  
Author(s):  
Takeshi Miyamoto ◽  
Fumio Arai ◽  
Osamu Ohneda ◽  
Katsumasa Takagi ◽  
Dirk M. Anderson ◽  
...  

Abstract Identification of receptor activator of nuclear factor-κB (RANK) and RANK-ligand (RANKL) has provided new insights into the osteoclast differentiation pathway. Osteoclast precursor cells were isolated using monoclonal antibodies against c-Fms and RANK, and the effect of adherence on the in vitro differentiation and proliferation of these cells was examined in 2 different types of stromal-cell–free culture systems: a semisolid culture medium (a nonadherent system) and a liquid culture medium (an adherent system). Osteoclast precursor cells were not able to differentiate into mature osteoclasts efficiently in the semisolid culture system. Trimerized RANKL enhanced osteoclast differentiation in semisolid cultures, but not to the extent seen when cells were allowed to adhere to plastic. Initial precursor cells were capable of differentiating into macrophages or osteoclasts. Once these cells were transferred to adherent conditions, striking differentiation was induced. Multinuclear cells were observed even after they had displayed phagocytic activity, which suggests that cell adhesion plays an important role in the differentiation of osteoclast precursor cells. Integrins, especially the arginine-glycine-aspartic acid (RGD)–recognizing integrins αv and β3, were needed for osteoclast-committed precursor cells to proliferate in order to form multinuclear osteoclasts, and the increase in cell density affected the formation of multinuclear cells. A model of osteoclast differentiation with 2 stages of precursor development is proposed: (1) a first stage, in which precursor cells are bipotential and capable of anchorage-independent growth, and (2) a second stage, in which the further proliferation and differentiation of osteoclast-committed precursor cells is anchorage-dependent.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 479 ◽  
Author(s):  
Agnieszka Smieszek ◽  
Klaudia Marcinkowska ◽  
Ariadna Pielok ◽  
Mateusz Sikora ◽  
Lukas Valihrach ◽  
...  

MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 inhibition on pre-osteoblastic cells differentiation and paracrine signaling towards pre-osteoclasts using indirect co-culture model of mouse pre-osteoblast (MC3T3) and pre-osteoclast (4B12) cell lines. The inhibition of miR-21 in MC3T3 cells (MC3T3inh21) modulated expression of genes encoding osteogenic markers including collagen type I (Coll-1), osteocalcin (Ocl), osteopontin (Opn), and runt-related transcription factor 2 (Runx-2). Inhibition of miR-21 in osteogenic cultures of MC3T3 also inflected the synthesis of OPN protein which is essential for proper mineralization of extracellular matrix (ECM) and anchoring osteoclasts to the bones. Furthermore, it was shown that in osteoblasts miR-21 regulates expression of factors that are vital for survival of pre-osteoclast, such as receptor activator of nuclear factor κB ligand (RANKL). The pre-osteoclast cultured with MC3T3inh21 cells was characterized by lowered expression of several markers associated with osteoclasts’ differentiation, foremost tartrate-resistant acid phosphatase (Trap) but also receptor activator of nuclear factor-κB ligand (Rank), cathepsin K (Ctsk), carbonic anhydrase II (CaII), and matrix metalloproteinase (Mmp-9). Collectively, our data indicate that the inhibition of miR-21 in MC3T3 cells impairs the differentiation and ECM mineralization as well as influences paracrine signaling leading to decreased viability of pre-osteoclasts.


2019 ◽  
Vol 8 (6) ◽  
pp. 836 ◽  
Author(s):  
Jeevithan Elango ◽  
Saeed Ur Rahman ◽  
Yves Henrotin ◽  
José Eduardo Maté Sánchez de Val ◽  
Bin Bao ◽  
...  

A recent study reported the expression of receptor activator of nuclear factor-κB (RANK) in mesenchymal stem cells (MSCs) surface that negatively regulates osteogenesis of MSCs. Empirical evidence from the previous study confirmed the role of parathyroid hormone-related protein (PTHrP) in osteoblastogenesis. However, it is necessary to understand the paracrine role of PTHrP and RANKL for osteogenesis in order to explore the hidden secrets in bone biology. Considering the above concept, paracrine cues of soluble-receptor activator of nuclear factor-κB ligand (sRANKL) and PTHrP in osteogenic differentiation of MSCs were investigated. Our results confirmed that sRANKL increased the expression of surface-RANK in MSCs at the earlier stage of osteogenesis, which was downregulated later in differentiated MSCs. In contrast, RANKL expression was low at the earlier stage of MSCs proliferation and high at the differentiation stage of MSCs, which may play a fundamental role in osteoclast formation. sRANKL downregulated osteogenesis of MSCs by decreasing progressive ankylosis (ANK) protein expression while PTHrP upregulated the osteogenic exploitive effect of sRANKL. Interestingly, when they were co-cultured with MSCs, T-lymphocytes expressed high membrane-RANKL levels that contribute to osteogenesis inhibition during MSC differentiation. Thus, our results disclose that sRANKL treatment downregulates osteogenesis of MSCs by increasing RANK expression at the earlier stage of differentiation and by inhibiting ANK. Further, we demonstrated that PTHrP accelerated the downregulating osteogenic effect of sRANKL.


Sign in / Sign up

Export Citation Format

Share Document