scholarly journals Heparin binding domain in vitronectin is required for oligomerization and thus enhances integrin mediated cell adhesion and spreading

FEBS Letters ◽  
2010 ◽  
Vol 584 (15) ◽  
pp. 3287-3291 ◽  
Author(s):  
Chandramouli R Chillakuri ◽  
Céline Jones ◽  
Helen J Mardon
2003 ◽  
Vol 371 (2) ◽  
pp. 565-571 ◽  
Author(s):  
José V. MOYANO ◽  
Alfredo MAQUEDA ◽  
Juan P. ALBAR ◽  
Angeles GARCIA-PARDO

Cell adhesion to fibronectin results in formation of actin stress fibres and focal adhesions. In fibroblasts, this response requires two co-operative signals provided by interactions of the RGD sequence with α5β1 integrin and the heparin-binding domain II (Hep II) domain with syndecan-4. Within Hep II, this activity was mapped to repeat III13 and to the peptide FN-C/H-V(WQPPRARITGY, repeat III14). We previously described that the synthetic heparin-binding peptide/III5 (HBP/III5) (WTPPRAQITGYRLTVGLTRR, repeat III5) binds heparin and mediates cell adhesion via chondroitin sulphate proteoglycans. We have now studied whether HBP/III5 co-operates with α5β1 and drives a full cytoskeletal response in melanoma cells. SKMEL-178 cells attached and spread on the RGD-containing FNIII7–FNIII10 (FNIII7–10) fragment, but did not form stress fibres or focal adhesions. Co-immobilization of HBP/III5 with FNIII7–10 or adding soluble HBP/III5 to cells prespread on FNIII7–10, effectively induced these structures. Cell transfection with dominant-negative N19RhoA, a member of the small GTPase family, abolished the HBP/III5 effect. Both chondroitinase and heparitinase diminished focal adhesions, indicating that both types of proteoglycans bound HBP/III5 in melanoma cells. We have mapped the active sequence of HBP/III5 to YRLTVGLTRR, which is a novel sequence in fibronectin with focal-adhesion-promoting activity. The last two arginine (R) residues of this sequence are required for activity, since their replacement by alanine completely abrogated the HBP/III5 cytoskeletal effect. Moreover, this sequence is also active in the context of large fibronectin fragments. Our results establish that the Hep III region provides co-operative signals to α5β1 for the progression of the cytoskeletal response and that these include activation of RhoA.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1568-1568
Author(s):  
Yamaja B.N. Setty ◽  
Suhita Gayen Betal ◽  
Surekha Kulkarni ◽  
Marie J. Stuart

Abstract Phosphatidylserine (PS)-dependent erythrocyte adhesion to both cultured endothelial cells and the components of sub-endothelial matrix appears to be mediated in part via thrombospondin-1 (TSP). While TSP exhibits multiple cell-binding domains, the PS-binding site on TSP has not been identified. Since a cell-binding domain for anionic heparin is located at the amino-terminal domain of TSP, we hypothesized that anionic PS-positive (PS+ve) red cells bind to this domain. In a recent preliminary study, using a flow adhesion system and PS+ve erythrocytes (prepared by treating control AA red cells with A23187), we have demonstrated that heparin inhibited PS+ve erythrocyte adhesion to immobilized TSP in a concentration-dependent manner with 58 to 77% inhibition noted at concentrations between 1 and 50 U/ml (n=9, P<0.001). Other anionic polysaccharides including high molecular weight dextran sulfate and chondroitin sulfate A also inhibited PS+ve erythrocyte adhesion to immobilized TSP with the magnitude of the inhibitory effects comparable to heparin. These results suggested that the heparin-binding domain on TSP may be involved in PS-mediated red cell adhesion to immobilized TSP. We have extended these studies to characterize the PS-binding site on TSP using monoclonal antibodies directed against specific cell-binding domains on the molecule and also using specific TSP peptides. We demonstrate that pre-incubation of immobilized TSP with an antibody directed against the heparin-binding domain on TSP (TSP-Ab9, Lab Vision) blocked PS-mediated red cell adhesion to immobilized TSP (80% inhibition compared to an isotype-matched negative control antibody, n=7, P<0.001), whereas an antibody that recognizes the collagen-binding domain on TSP (TSP-Ab4) did not affect this process. In addition, incubation of PS+ve erythrocytes with a TSP peptide containing the specific heparin-binding motif, KKTRG, inhibited PS-mediated red cell adhesion by 55% (P<0.001, n=6), whereas a peptide lacking the binding motif had no effect. Since protein confirmation of immobilized TSP appears to be different from that of soluble TSP, we next investigated whether soluble TSP, like immobilized TSP, also interacted with PS+ve erythrocytes. Erythrocytes containing 8 to 10% PS+ve cells were incubated in the absence or the presence of increasing concentrations of soluble TSP (0.1 to 10 μg/ml), and then analyzed by flow cytometry for surface bound TSP using both adhesion blocking (TSP-Ab9) and non-blocking (TSP-Ab4) anti-TSP antibodies. We demonstrate that soluble TSP binds to PS+ve erythrocytes in a concentration-dependent manner with 3 to 11% TSP-positive (TSP+ve) red cells measured at soluble TSP concentrations between 1 to 10 μg/ml (n=4). In addition, TSP binding could be detected only with the non-adhesion blocking antibody TSP-Ab4, which recognizes the collagen-binding domain on TSP. The adhesion blocking antibody TSP-Ab9 that interacts with the heparin binding domain, failed to detect any TSP+ve red cells. No TSP+ve erythrocytes were detected when PS-negative control red cells were evaluated in binding assays. In parallel adhesion experiments, soluble TSP inhibited PS+ve erythrocyte adhesion to immobilized TSP at concentrations at which significant TSP binding to erythrocytes occurred (43% and 44% inhibition at 5 and 10 μg of soluble TSP per ml, n=4). These results conclusively demonstrate that PS-positive erythrocytes interact with both immobilized and fluid phase TSP through the heparin-binding domain, and that heparin blocks this interaction.


2000 ◽  
Vol 24 (1) ◽  
pp. 43-51 ◽  
Author(s):  
H Song ◽  
J Beattie ◽  
IW Campbell ◽  
GJ Allan

Using site-directed mutagenesis, we have undertaken a study of a potential IGF-binding site in the C-terminal domain of rat IGFBP-5, lying close to or within a previously described heparin-binding domain (residues 201-218) in this protein. After analysis of binding activity using three different methods - ligand blotting, solution phase equilibrium binding and biosensor measurement of real-time on- and off-rates - we report that the mutation of two highly conserved residues within this region (glycine 203 and glutamine 209) reduces the affinity of the binding protein for both IGF-I and IGF-II, while having no effect on heparin binding. In addition, we confirm that mutation of basic residues within the heparin-binding domain (R201L, K202E, K206Q and R214A) results in a protein that has attenuated heparin binding but shows only a small reduction in affinity for IGF-I and -II. Previous findings have described the reduction in affinity of IGFBP-5 for IGFs that occurs after complexation of the binding protein with heparin or other components of the extracellular matrix (ECM) and have postulated that such an interaction may result in conformational changes in protein structure, affecting subsequent IGF interaction. Our data suggesting potential overlap of heparin- and IGF-binding domains argue for a more direct effect of ECM modulation of the affinity of IGFBP-5 for ligand by partial occlusion of the IGF-binding site after interaction with ECM.


Sign in / Sign up

Export Citation Format

Share Document