PLASMINOGEN DOES NOT IMPROVE BLASTOCYST HATCHING IN VITRO, BUT MAY IMPROVE BLASTOCYST QUALITY

2020 ◽  
Vol 114 (3) ◽  
pp. e338
Author(s):  
Heidi J. Engelhorn ◽  
William B. Schoolcraft ◽  
Rebecca L. Krisher
2003 ◽  
Vol 7 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Dr Henry Sathananthan ◽  
Sulochana Gunasheela ◽  
Judith Menezes

Zygote ◽  
2020 ◽  
Vol 28 (4) ◽  
pp. 286-290
Author(s):  
Felipe L. Ongaratto ◽  
Paula Rodriguez-Villamil ◽  
Marcelo Bertolini ◽  
Daniel F. Carlson

SummaryThe aim of this study was to evaluate the effects of alternative protocols to improve oocyte selection, embryo activation and genomic reprogramming on in vitro development of porcine embryos cloned by somatic cell nuclear transfer (SCNT). In Experiment 1, in vitro-matured oocytes were selected by exposure to a hyperosmotic sucrose solution prior to micromanipulation. In Experiment 2, an alternative chemical activation protocol using a zinc chelator as an adjuvant (ionomycin + N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) + N-6-dimethylaminopurine (6-DMAP)) was compared with a standard protocol (ionomycin + 6-DMAP) for the activation of porcine oocytes or SCNT embryos. In Experiment 3, presumptive cloned zygotes were incubated after chemical activation in a histone deacetylase inhibitor (Scriptaid) for 15 h, with the evaluation of embryo yield and total cell number in day 7 blastocysts. In Experiment 1, cleavage rates tended to be higher in sucrose-treated oocytes than controls (123/199, 61.8% vs. 119/222, 53.6%, respectively); however, blastocyst rates were similar between groups. In Experiment 2, cleavage rates were higher in zygotes treated with TPEN than controls but no difference in blastocyst rates between groups occurred. For Experiment 3, the exposure to Scriptaid did not improve embryo development after cloning. Nevertheless, the total number of cells was higher in cloned zygotes treated with Scriptaid than SCNT controls. In conclusion, oocyte selection by sucrose as well as treatments with zinc chelator and an inhibitor of histone deacetylases did not significantly improve blastocyst yield in cloned and parthenotes. However, the histone deacetylases inhibitor produced a significant improvement in the blastocyst quality.


2006 ◽  
Vol 18 (2) ◽  
pp. 185 ◽  
Author(s):  
Y. Agca ◽  
H. Men ◽  
S. F. Mullen ◽  
L. K. Riley ◽  
R. S. Prather ◽  
...  

The ability to produce porcine embryos of good quality will have a significant impact on a number of porcine assisted reproductive technologies, such as cloning, intracytoplasmic sperm injection, and embryo cryopreservation. However, porcine embryos resulting from current serum-free embryo culture systems differ significantly both structurally and functionally from those derived in vivo (Wang et al. 1999 Mol. Reprod. Dev. 53, 99-107). In this experiment, the quality of porcine embryos produced by North Carolina State University (NCSU)-23 medium (Petters and Wells 1993 J. Reprod. Fertil. Suppl. 1993, 48, 61-73) and porcine zygote medium (PZM)-1 (Yoshioka et al. 2002 Biol. Reprod. 66, 112-119) were compared by assessing the total cell number and the time course of in vitro blastocyst hatching. Porcine embryos were produced by in vitro maturation and fertilization using serum-free systems. After fertilization, presumptive zygotes were randomly allocated to either PZM-1 or NCSU-23 for subsequent development. On Day 4 of culture, the embryo culture media were supplemented with 10% fetal bovine serum (FBS). Day 6 blastocysts from each group were counted and the blastocysts were subsequently fixed in 4% formalin for counting the total cell number. The cell number in each embryo was determined by counting the nuclei after staining with bisbenzimide (Hoechst 33342). To assess the hatching ability of blastocysts, Day 6 blastocysts were cultured until Day 9 and hatched blastocysts were counted daily. Day 6 blastocyst rates (ratio of blastocysts to oocytes) and total cell number count were replicated three times. The time course of blastocyst hatching experiment was repeated four times. The data were analyzed using a chi-square test, Fisher's exact test, or Student's t-test. The blastocyst rate from culture in PZM-3 was 19.4 � 0.96% (mean � SEM), which was similar to that (16.7 � 3.2%) resulting from culture in NCSU-23 (P > 0.05). However, the total cell number in Day 6 blastocysts cultured in PZM-3 was significantly higher than for blastocysts cultured in NCSU-23 (57 � 3.1 vs. 46 � 1.7; P < 0.01). The total hatching rates (ratio of hatched blastocysts to total blastocysts) by Day 9 were similar between the two culture systems (50.1 � 9.1% vs. 50.7 � 4.1%; P > 0.05). However, on Day 6, 2.1% of blastocysts from PZM-3 culture hatched whereas no blastocysts from NCSU-23 culture hatched. The cumulative hatching rates from PZM-3 culture on Day 7 were significantly higher than those from NCSU-23 culture (15.1 � 3.8% vs. 2.6 � 1.1%; P < 0.01). In conclusion, these data suggest that blastocysts produced in PZM-3 medium have better quality than blastocysts produced in the NCSU-23 culture system as assessed by the total cell number and the time course of blastocyst hatching. This project was supported by a grant from the National Institutes of Health (U42 RR 018877).


2009 ◽  
Vol 21 (1) ◽  
pp. 148
Author(s):  
D. N. Q. Thanh ◽  
K. Matsukawa ◽  
M. Kaneda ◽  
S. Akagi ◽  
Y. Kanai ◽  
...  

In the mouse, single blastomeres of the 2-cell embryos can develop into adult mice and occasionally both separated blastomeres can give rise to twin animals (reviewed by Tarkowski AK et al. 2001 Int. J. Dev. Biol. 45, 591–596). As a preliminary study for production of monozygotic twins from porcine 2-cell embryos, we investigated the effects of removal of zona pellucida and blastomere isolation at the 2-cell stage on subsequent development of parthenogenetic embryos. Oocytes with the first polar body were parthenogenetically activated after 44 h of in vitro maturation. Stimulated oocytes were then incubated in IVC-PyrLac (IVC medium with pyruvate and lactose) according to the method reported by Kikuchi K et al. (2002 Biol. Reprod. 66, 1033–1041). After 24 to 30 h of parthenogenetic activation, equally cleaved 2-cell embryos were selected and used for the experiments. Some 2-cell embryos were then treated with pronase to remove the zona pellucida and cultured individually as zona-free 2-cell embryos having 2 blastomeres in pair (ZF group), and single blastomeres were split from ZF group and cultured separately (SB group) in V-shaped microwells. In addition, intact 2-cell embryos were cultured individually without pronase treatment as a control group. After 24 h of in vitro culture, IVC-PyrLac was replaced by IVC-Glu (IVC with glucose). The blastocyst rates on Day 6 (Day 0 was defined as the day of electrical stimulation) in control, ZF, and SB groups did not differ (47.6, 50.0, and 42.1%, respectively). Nevertheless, blastocysts derived from the ZF (28.6 ± 3.0) and SB groups (25.9 ± 1.3) had a significantly lower total cell number than that of the control group (41.7 ± 3.2; P < 0.01 by ANOVA). Although the total cell number of blastocysts originating from single blastomeres was significantly lower than that in the intact embryos, the blastocyst formation rates were not different between them. This indicated the possibility of production of monozygotic twins from porcine 2-cell embryos divided into 2 single blastomeres. However, further research is needed to improve blastocyst quality descended from single blastomeres. In conclusion, the removal of the zona pellucida had a negative influence on blastocyst quality but did not affect the development of porcine embryos to the blastocyst stage.


2012 ◽  
Vol 24 (1) ◽  
pp. 164 ◽  
Author(s):  
M. Zhang ◽  
H. H. Chen ◽  
J. W. Tang ◽  
X. W. Liang ◽  
M. T. Chen ◽  
...  

Embryo-splitting technology provides an effective procedure for increasing the number of transferable embryos per donor, producing genetically identical offspring and facilitating embryo sexing. The ability to identify the sex of embryos before transfer will offer a reliable, economical and practical procedure for buffalo breeding. In this study, we have assessed the feasibility of production of offspring with controlled sex in buffalo by first comparing the effect of blastocyst quality on the viability of demi-embryos and then identifying the sex of a demi-embryo by multiplex-nested PCR before transfer into the recipient. In vitro-matured buffalo oocytes were fertilized by IVF and cultured to the blastocyst stage for 6 to 7 days as described by Lu et al. (2007 Anim. Reprod. Sci. 100, 192–196). These blastocysts were classified in terms of their developmental pattern and morphology on a scale of 1 to 3 grades as described by McEvoy et al. (1990 Theriogenology 33, 1245–1253). Blastocysts were split into 2 equal parts by a micromanipulation system. Viability of the resulting demi-embryos was confirmed by formation of a blastocoel cavity and definite inner cell mass after culture for 24 h. One of the zone-free demi-embryos derived from a grade-1 blastocyst was cultured in TCM 199 supplemented with 10% fetal bovine serum for another 2 h, then was transplanted to a spontaneous oestrous recipient. The other demi-embryo was used for sexing by multiplex-nested PCR (Fu et al. 2007 Theriogenology 68, 1211–1218). The results showed that grade-1 blastocysts yielded more viable demi-embryos than grade-2 and grade-3 blastocysts [P < 0.01; 73/92 (79.67%) vs 32/76 (47.05%) vs 26/94 (26.53%), respectively]. Transplantation of the presumed-Y demi-embryo derived from grade-1 blastocyst into a recipient resulted in the birth of a male buffalo calf. To the best of our knowledge, this is the first buffalo calf produced following embryo splitting and PCR sexing of the embryo at the blastocyst stage. Successful birth of the desired-sex offspring in the present study indicates the feasibility of using embryo splitting in combination with multiplex-nested PCR sexing to produce offspring of controlled sex in swamp buffalo. However, the quality of embryos before splitting was an important factor governing the in vitro development of viable demi-embryos. This study was supported by the Guangxi Science and Technology R&D Program (0626001-3-1, 0815008-2-4).


2015 ◽  
Vol 27 (1) ◽  
pp. 248
Author(s):  
N. G. Canel ◽  
R. J. Bevacqua ◽  
M. I. Hiriart ◽  
N. Chavez Rabelo ◽  
L. S. Almeida Camargo ◽  
...  

Intracytoplasmic sperm injection (ICSI) mediated transgenesis is an effective tool for transgenic animal production. However, ICSI in cattle remains inefficient. In this work, we assayed approaches to improve egfp expressing blastocysts production by ICSI: the sperm pretreatment with heparin and l-glutathione (Hep-GSH), the use of sex-sorted sperm (SS), the refrozen/thawing of SS sperm, and the combination of these. Quality of ICSI blastocysts was analysed by studying the expression of 4 genes, and the rates of DNA fragmentation. Cumulus-oocyte complexes from slaughtered cow ovaries were in vitro-matured for 21 h. Nonsorted (NS) and sex-sorted (SS) frozen straws were thawed. Some of them were incubated with 80 μM Hep-15 mM GSH for 20 h (Hep-GSH+). The Hep-GSH-control group was not pretreated. Semen samples were co-incubated with 50 ng µL–1 of pCX-EGFP for 5 min before ICSI. Moreover, the SS sperm that are usually discarded after ICSI were cryopreserved and used for ICSI after a second thawing (ICSI SS refrozen). The ICSI NS, sham, and diploid parthenogenetic (Diplo PA) controls were included. Oocytes were activated with 5 µM ionomycin for 4 min, TCM-199 for 3 h (except for diploid PA), and 1.9 mM DMAP for 3 h. Cleavage and blastocyst/egfp expression rates were evaluated on Days 2 and 7 post-ICSI, respectively. Results are shown in Table 1. Relative expression of HMGN1, GLUT5, AQP3, and OCT4 genes from ICSI NS Hep-GSH+ and IVF blastocysts were compared by qPCR. Data were analysed by the pair-wise fixed reallocation randomisation test. None of the 4 genes showed differences between groups. The DNA fragmented nucleus index/blastocyst cell numbers were determined by TUNEL assay, not showing differences between groups (Kruskal–Wallis test, P ≤ 0.05). Means ± s.d. were 29 ± 17/91 ± 27 for ICSI Hep-GSH+; 27 ± 15/63 ± 34 for ICSI Hep-GSH–; 28 ± 17/68 ± 17 for ICSI SS, 28 ± 13/75 ± 24 for ICSI SS refrozen; and 21 ± 13/105 ± 59 for IVF SS control. The Hep-GSH pretreatment can increase blastocyst and transgene expressing blastocysts rates after TM-ICSI, except when SS semen is used. Interestingly, the use of SS sperm for ICSI can be maximized by cryopreservation and reuse of discarded sperm cells. The parameters analysed in this work indicate that the proposed approaches do not affect blastocyst quality. Therefore, Hep-GSH pretreatment of NS sperm and refrozen SS sperm could be applied for TM-ICSI in bovine for the production of transgenic animals. Table 1.In vitro development and egfp expression of ICSI embryos fertilized with nonsorted (NS) and sex-sorted (SS) sperm pretreated with Hep-GSH, refrozen, or both


Reproduction ◽  
2001 ◽  
pp. 61-71 ◽  
Author(s):  
CM O'Sullivan ◽  
SL Rancourt ◽  
SY Liu ◽  
DE Rancourt

Before implantation the blastocyst is maintained within a proteinaceous coat, the zona pellucida, which prevents polyspermy and ectopic pregnancy. An extracellular trypsin-like activity, which is necessary for hatching from the zona pellucida in vitro, is localized to the abembryonic pole of the blastocyst. Upon hatching, the extracellular matrix-degrading proteinases urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) are thought to promote blastocyst invasion. However, gene disruption experiments have demonstrated that uPA and MMP-9 are dispensable and, thus, that other key enzymes are involved in implantation. In this study, a novel implantation serine proteinase (ISP1) gene, which is distantly related to haematopoietic tryptases and represents a novel branch of the S1 proteinase family, was cloned. ISP1 is expressed throughout morulae and blastocysts during hatching and outgrowth. Abrogation of ISP1 mRNA accumulation using antisense oligodeoxynucleotides disrupts blastocyst hatching and outgrowth in vitro. The results of this study indicate that the ISP1 gene probably encodes the long sought after 'hatching enzyme' that is localized to the abembryonic pole during hatching in vitro. ISP1 is the earliest embryo-specific proteinase to be expressed in implantation and may play a critical role in connecting embryo hatching to the establishment of implantation competence at the abembryonic pole of the blastocyst.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 763 ◽  
Author(s):  
Irene Sánchez-Ajofrín ◽  
María Iniesta-Cuerda ◽  
Patricia Peris-Frau ◽  
Alicia Martín-Maestro ◽  
Daniela-Alejandra Medina-Chávez ◽  
...  

A major limiting factor for the development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, compared to livestock animals is the poor availability and limited access to biological material. Thus, the use of post-mortem ovaries from slaughtered animals represent a source of oocytes for the large scale production of embryos needed for research and to improve the efficiency of IVP. However, these oocytes are not as developmentally competent as their in vivo counterparts. Moreover, oocytes are usually obtained from ovaries that have been transported for long distances, which may also affect their quality. In order to overcome the issues associated with prolonged storage times of post-mortem material, in this study we examined the effect of melatonin supplementation to the ovary transport medium on oocyte quality, embryo yield, and blastocyst quality in Iberian red deer. When necessary, sheep was used as an experimental model due to the large number of samples required for analysis of oocyte quality parameters. Oocytes were in vitro matured and assessed for early apoptosis; DNA fragmentation; reactive oxygen species (ROS); reduced glutathione (GSH) content, mitochondrial membrane potential, and distribution; and relative abundance of mRNA transcript levels. After in vitro fertilization, embryo rates and blastocyst quality were also investigated. The results revealed that melatonin treatment significantly increased intracellular level of GSH in sheep oocytes. Moreover, the percentage of cleavage and blastocyst yield in red deer was greater compared to the Control group and there was lower abundance of oxidative stress- and apoptosis-related SHC1, TP53, and AKR1B1 mRNA transcripts in blastocysts for the Melatonin group. In conclusion, the supplementation of melatonin to the ovary storage medium had a positive effect on the developmental competence and quality of resulting blastocysts in Iberian red deer.


2012 ◽  
Vol 24 (1) ◽  
pp. 214
Author(s):  
J. Jarazo ◽  
A. Gambini ◽  
A. De Stefano ◽  
L. Muredas ◽  
J. G. Oriol ◽  
...  

Intracytoplasmic sperm injection (ICSI) is an alternative method for producing in vitro-fertilized embryos in horses. Some authors have suggested that using the piezo drill to inject the spermatozoon is required to obtain acceptable blastocyst rates after ICSI. In order to avoid the use of this equipment, the aim of our study was to evaluate 4 different chemical activation protocols and their effect on embryo development. Cumulus–oocyte complexes were recovered from ovaries of slaughtered mares. The maturation medium was DMEM/F12 supplemented with 10% fetal bovine serum (FBS), 1 μL mL–1 of insulin-transferrin-selenium, 1 mM sodium pyruvate, 100 mM cysteamine and 0.1 mg mL–1 of FSH at 39°C in a humidified atmosphere of 6.5% CO2 in air for 24 h. The ICSI was carried out in 20-μL droplets of TALP-HEPES with a 9-μm pipette, using frozen-thawed spermatozoa from 1 stallion. Spermatozoa were held separate in 100-μL droplets of Modified Whittens. Motile spermatozoa were aspirated and transferred to a 5-μL drop of 7% (v/v) polyvinylpyrrolidone, where 1 sperm was immobilized by swiping the injection pipette across its tail; then, the sperm was injected into the oocyte. All injected oocytes were subjected to 8.7 μM ionomycin for 4 min, followed by 1 of 3 further activation treatments: (1) 4-h culture in 1 mM 6-DMAP and 10 mg mL–1 of cycloheximide, starting 3 h after ionomycin; (2) 5-h culture in 10 mg mL–1 of cycloheximide, starting 10 min after ionomycin; (3) An extra incubation with 5 mM ionomycin for 4 min, starting 3 h after ionomycin. Some injected oocytes were left without a further activation protocol (group 4). After activation, injected oocytes were cultured in 100-μL droplets of DMEM/F12 with 5% of FBS at 39°C in a humidified atmosphere of 5% O2, 5% CO2 and 90% N2. Cleavage (48 h after activation) and blastocyst formation (7–8 days) of all experimental groups were assessed. Culture medium was renewed on Day 3 with fresh DMEM/F12 with 5% of FBS. At Day 9, the zona pellucida of some blastocysts was removed and the blastocysts were maintained in culture until Day 15. Blastocyst growth was determined every 24 h. Statistical differences (using chi-square analysis) were observed in cleavage with treatments 1 and 3 when compared to the other groups (1: 30/52, 58%; 2: 8/40, 20%; 3: 9/25, 36%; and 4: 10/38, 26%). There was no difference on blastocyst rates based on injected oocytes (1: 5/52, 9.6%; 2: 2/40, 5%; 3: 1/25, 4%; and 4: 2/38, 5.3%). On Day 7, blastocyst quality did not differ among treatments and on Day 15, blastocysts from groups 3 and 4 reached 1130 μm and 4300 μm, respectively. Despite the difference observed in cleavage, this work suggests that equine blastocysts could be obtained with all of the activation protocols, without the use of the piezo drill. Further studies are required to assess the effect of chemical activation on in vivo development of produced blastocysts to confirm that they are not parthenogenetic. We are grateful to Mr. Willem Melchior, La Vanguardia Polo Club for some financial support and encouragement to undertake this project.


Sign in / Sign up

Export Citation Format

Share Document