scholarly journals A novel murine tryptase involved in blastocyst hatching and outgrowth

Reproduction ◽  
2001 ◽  
pp. 61-71 ◽  
Author(s):  
CM O'Sullivan ◽  
SL Rancourt ◽  
SY Liu ◽  
DE Rancourt

Before implantation the blastocyst is maintained within a proteinaceous coat, the zona pellucida, which prevents polyspermy and ectopic pregnancy. An extracellular trypsin-like activity, which is necessary for hatching from the zona pellucida in vitro, is localized to the abembryonic pole of the blastocyst. Upon hatching, the extracellular matrix-degrading proteinases urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) are thought to promote blastocyst invasion. However, gene disruption experiments have demonstrated that uPA and MMP-9 are dispensable and, thus, that other key enzymes are involved in implantation. In this study, a novel implantation serine proteinase (ISP1) gene, which is distantly related to haematopoietic tryptases and represents a novel branch of the S1 proteinase family, was cloned. ISP1 is expressed throughout morulae and blastocysts during hatching and outgrowth. Abrogation of ISP1 mRNA accumulation using antisense oligodeoxynucleotides disrupts blastocyst hatching and outgrowth in vitro. The results of this study indicate that the ISP1 gene probably encodes the long sought after 'hatching enzyme' that is localized to the abembryonic pole during hatching in vitro. ISP1 is the earliest embryo-specific proteinase to be expressed in implantation and may play a critical role in connecting embryo hatching to the establishment of implantation competence at the abembryonic pole of the blastocyst.

Reproduction ◽  
2001 ◽  
pp. 235-244 ◽  
Author(s):  
CM O'Sullivan ◽  
SY Liu ◽  
SL Rancourt ◽  
DE Rancourt

Hormones prepare the uterus for the arrival and subsequent invasion of the embryo during pregnancy. Extracellular matrix-degrading proteinases and their inhibitors are involved in this integration process. Recent genetic evidence indicates that there is redundancy within the implantation proteinase cascade, indicating that additional proteinases may be involved. Recently, we described a novel implantation serine proteinase (ISP1) gene that encodes the embryo-derived enzyme strypsin, which is necessary for blastocyst hatching in vitro and the initiation of invasion. The evidence presented in the present study indicates that a second proteinase secreted from the uterus also participates in lysis of the zona pellucida. A second implantation serine proteinase gene (ISP2) was isolated, which encodes a related secreted tryptase expressed specifically within uterine endometrial glands. In pseudopregnancy, ISP2 gene expression is dependent on progesterone priming and is inhibited by the antiprogestin RU486. On the basis of similarities between ISP2 gene expression and that of a progesterone-regulated luminal proteinase associated with lysis of the zona pellucida, it is possible that the strypsin-related protein, ISP2, may encode a zona lysin proteinase.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 409 ◽  
Author(s):  
Manuela Antoniel ◽  
Francesco Traina ◽  
Luciano Merlini ◽  
Davide Andrenacci ◽  
Domenico Tigani ◽  
...  

Mutations in collagen VI genes cause two major clinical myopathies, Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), and the rarer myosclerosis myopathy. In addition to congenital muscle weakness, patients affected by collagen VI-related myopathies show axial and proximal joint contractures, and distal joint hypermobility, which suggest the involvement of tendon function. To gain further insight into the role of collagen VI in human tendon structure and function, we performed ultrastructural, biochemical, and RT-PCR analysis on tendon biopsies and on cell cultures derived from two patients affected with BM and UCMD. In vitro studies revealed striking alterations in the collagen VI network, associated with disruption of the collagen VI-NG2 (Collagen VI-neural/glial antigen 2) axis and defects in cell polarization and migration. The organization of extracellular matrix (ECM) components, as regards collagens I and XII, was also affected, along with an increase in the active form of metalloproteinase 2 (MMP2). In agreement with the in vitro alterations, tendon biopsies from collagen VI-related myopathy patients displayed striking changes in collagen fibril morphology and cell death. These data point to a critical role of collagen VI in tendon matrix organization and cell behavior. The remodeling of the tendon matrix may contribute to the muscle dysfunction observed in BM and UCMD patients.


2021 ◽  
Vol 22 (19) ◽  
pp. 10849
Author(s):  
Lejo Johnson Chacko ◽  
Hanae Lahlou ◽  
Claudia Steinacher ◽  
Said Assou ◽  
Yassine Messat ◽  
...  

We analyzed transcriptomic data from otic sensory cells differentiated from human induced pluripotent stem cells (hiPSCs) by a previously described method to gain new insights into the early human otic neurosensory lineage. We identified genes and biological networks not previously described to occur in the human otic sensory developmental cell lineage. These analyses identified and ranked genes known to be part of the otic sensory lineage program (SIX1, EYA1, GATA3, etc.), in addition to a number of novel genes encoding extracellular matrix (ECM) (COL3A1, COL5A2, DCN, etc.) and integrin (ITG) receptors (ITGAV, ITGA4, ITGA) for ECM molecules. The results were confirmed by quantitative PCR analysis of a comprehensive panel of genes differentially expressed during the time course of hiPSC differentiation in vitro. Immunocytochemistry validated results for select otic and ECM/ITG gene markers in the in vivo human fetal inner ear. Our screen shows ECM and ITG gene expression changes coincident with hiPSC differentiation towards human otic neurosensory cells. Our findings suggest a critical role of ECM-ITG interactions with otic neurosensory lineage genes in early neurosensory development and cell fate determination in the human fetal inner ear.


2006 ◽  
Vol 291 (6) ◽  
pp. L1277-L1285 ◽  
Author(s):  
H. Garrett R. Thompson ◽  
Justin D. Mih ◽  
Tatiana B. Krasieva ◽  
Bruce J. Tromberg ◽  
Steven C. George

The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth factor-β (TGF-β) modulates these processes, we hypothesized that epithelial-derived TGF-β also plays a critical role in maintaining the extracellular matrix at basal conditions. We utilized an in vitro model of the epithelial-mesenchymal trophic unit in the human airways to determine the role of epithelial-derived TGF-β in modulating the extracellular matrix under basal and wound-healing conditions. When differentiated at an air-liquid interface, the human bronchial epithelium produces active TGF-β2 at a concentration of 50–70 pg/ml, whereas TGF-β1 is undetectable. TGF-β2 increases two- to threefold following scrape injury in a dose-dependent fashion and significantly enhances both α-smooth muscle actin expression in the underlying collagen-embedded fibroblasts and secretion of tenascin-C into the matrix. Multiphoton microscopy demonstrates substantially enhanced second harmonic generation from fibrillar collagen in the matrix. Pretreatment of the matrix with either sirolimus (2.5 nM) or paclitaxel (10 nM) abolishes the increases in both TGF-β2 and second harmonic generation in response to epithelial injury. In the absence of the epithelium, exogenous active TGF-β2 (0–400 pg/ml) produces a biphasic response in the second harmonic signal with a minimum occurring at the epithelial-derived basal level. We conclude that epithelial-derived TGF-β2 is secreted in response to injury, significantly alters the bulk optical properties of the extracellular matrix, and its tight regulation may be required for normal collagen homeostasis.


2006 ◽  
Vol 26 (7) ◽  
pp. 2519-2530 ◽  
Author(s):  
Nan Tang ◽  
Fiona Mack ◽  
Volker H. Haase ◽  
M. Celeste Simon ◽  
Randall S. Johnson

ABSTRACT The tumor suppressor von Hippel-Lindau protein (pVHL) is critical for cellular molecular oxygen sensing, acting to target degradation of the hypoxia-inducible factor alpha transcription factor subunits under normoxic conditions. We have found that independent of its function in regulating hypoxic response, the VHL gene plays a critical role in embryonic endothelium development through regulation of vascular extracellular matrix assembly. We created mice lacking the VHL gene in endothelial cells; these conditional null mice died at the same stage as homozygous VHL-null mice, with similar vascular developmental defects. These included defective vasculogenesis in the placental labyrinth, a collapsed endocardium, and impaired vessel network patterning. The defects in embryonic vascularization were correlated with a diminished vascular fibronectin deposition in vivo and defective endothelial extracellular fibronectin assembly in vitro. We found that the impaired migration and adhesion of VHL-null endothelial cells can be partially rescued by the addition of back exogenous fibronectin, which indicates that pVHL regulation of fibronectin deposition plays an important functional role in vascular patterning and maintenance of vascular integrity.


2017 ◽  
Author(s):  
◽  
Farrah Ann Monibi

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Musculoskeletal injuries are a common and significant problem in orthopaedic practice. Despite advances in orthopaedic surgery, effective treatments for injuries to the knee meniscus remain a common and significant clinical challenge. Tissue engineering is a developing field that aims to regenerate injured tissues with a combination of cells, scaffolds, and signals. Many natural and synthetic scaffold materials have been developed and tested for the repair and restoration of a number of musculoskeletal tissues. Among these, biological scaffolds derived from extracellular matrix (ECM) have been developed and tested given the critical role of the ECM for maintaining the biological and biomechanical properties, structure, and function of native tissues. Decellularized scaffolds composed of ECM hold promise for repair and regeneration of the meniscus given the potential for ECM-based biomaterials to aid in cell recruitment, infiltration, and differentiation. The objectives of this research were to decellularize canine menisci in order to fabricate a micronized, ECM-derived scaffold, and to determine the cytocompatibility and repair potential of the scaffold ex vivo by developing an in vitro model for meniscal repair. In the first series of experiments, menisci were decellularized with a combination of physical agitation and chemical treatments. For scaffold fabrication, decellularized menisci were cryoground into a powder and the size and morphology of the ECM particles were evaluated using scanning electron microscopy. Histologic and biochemical analyses of the scaffold confirmed effective decellularization with loss of proteoglycan from the tissue but no significant reduction in collagen content. When washed effectively, the decellularized scaffold was cytocompatible to meniscal fibrochondrocytes, synoviocytes, and whole meniscal tissue based on the resazurin reduction assay, fluorescent live/dead staining, and histologic evaluation. Further, the scaffold supported cellular attachment and proliferation when combined with platelet rich plasma, and promoted an upregulation of genes associated with meniscal ECM synthesis and tissue repair. In an ex vivo model for meniscal repair, radial tears repaired and augmented with the scaffold demonstrated increased cellular proliferation and tissue repair compared to non-augmented repairs. Therefore, a micronized scaffold derived from decellularized meniscus may be a viable biomaterial for promoting avascular meniscal healing. However, further studies are necessary to determine an optimal carrier for delivery of the scaffold, and to examine the potential for the scaffold to induce cellular differentiation and functional meniscal fibrochondrogenesis.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Kelly Elizabeth Sullivan ◽  
Lauren Deems Black

The extracellular matrix is no longer considered a static support structure for cells but a dynamic signaling network with the power to influence cell, tissue, and whole organ physiology. In the myocardium, cardiac fibroblasts are the primary cell type responsible for the synthesis, deposition, and degradation of matrix proteins, and they therefore play a critical role in the development and maintenance of functional heart tissue. This review will summarize the extensive research conducted in vivo and in vitro, demonstrating the influence of both physical and chemical stimuli on cardiac fibroblasts and how these interactions impact both the extracellular matrix and, by extension, cardiomyocytes. This work is of considerable significance, given that cardiovascular diseases are marked by extensive remodeling of the extracellular matrix, which ultimately impairs the functional capacity of the heart. We seek to summarize the unique role of cardiac fibroblasts in normal cardiac development and the most prevalent cardiac pathologies, including congenital heart defects, hypertension, hypertrophy, and the remodeled heart following myocardial infarction. We will conclude by identifying existing holes in the research that, if answered, have the potential to dramatically improve current therapeutic strategies for the repair and regeneration of damaged myocardium via mechanotransductive signaling.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ismael Lamas-Toranzo ◽  
Noelia Fonseca Balvís ◽  
Ana Querejeta-Fernández ◽  
María José Izquierdo-Rico ◽  
Leopoldo González-Brusi ◽  
...  

Zona pellucida (ZP), the extracellular matrix sheltering mammalian oocytes and embryos, is composed by 3 to 4 proteins. The roles of the three proteins present in mice have been elucidated by KO models, but the function of the fourth component (ZP4), present in all other eutherian mammals studied so far, has remained elusive. Herein, we report that ZP4 ablation impairs fertility in female rabbits. Ovulation, fertilization and in vitro development to blastocyst were not affected by ZP4 ablation. However, in vivo development is severely impaired in embryos covered by a ZP4-devoided zona, suggesting a defective ZP protective capacity in the absence of ZP4. ZP4-null ZP was significantly thinner, more permeable, and exhibited a more disorganized and fenestrated structure. The evolutionary conservation of ZP4 in other mammals, including humans, suggests that the structural properties conferred by this protein are required to ensure proper embryo sheltering during in vivo preimplantation development.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Xuebin Fu ◽  
Jihyun Jang ◽  
Muthukumar Gunasekaran ◽  
Sudhish Sharma ◽  
Rachana Mishra ◽  
...  

In dilated cardiomyopathy (DCM), exaggerated fibrosis reduces tissue compliance and accelerates the progression to heart failure. However, the mechanisms for fibrotic remodeling in DCM are not well understood. Exosomes are small extracellular vesicles that function as intercellular messengers. Our hypothesis is that exosomes from hypertrophic stimulated DCM cardiomyocytes activate fibrosis in the heart. We utilized iPSCs reprogrammed from DCM patients and healthy control individuals (CTL) to differentiate them into cardiomyocytes (iCMs). iCMs were stimulated by Angiotensin II, and conditioned media were collected to isolate exosomes thereafter. Fibroblasts were treated with CTL-exosomes and DCM-exosomes respectively in vitro. Meanwhile, we injected exosomes into the mouse hearts in vivo. Fibrotic markers and protein expression were examined by western blot and histology. Additionally, we also analyzed the microRNA profiles in the DCM-exosomes and CTL-exosomes by small RNA sequencing. The microRNAs expressions in exosomes were also confirmed by RT-PCR. We found DCM exosomes treatment significantly upregulated extracellular matrix proteins expressions in fibroblasts. Collagen I, collagen III, and CTGF were significantly upregulated in DCM exosomes treatment group compared to CTL exosomes treatment group. Intramyocardial injection of DCM exosomes into wild type mice (CD-1) caused impaired ejection fraction after 7 days compared to CTL exosomes injection (DCM = 51.5 ± 6.21%*, CTL =64.6 ± 3.99%; * = P < 0.05). Picro sirius red staining for extracellular matrix showed significant increase of fibrosis in DCM exosome injection group, compared to CTL exosomes and PBS group (DCM = 3.08 ± 0.24%*, CTL = 0.087 ± 0.02%, PBS = 0.053 ± 0.01%; * = P < 0.05). Next-generation sequencing of these exosomes exhibited upregulation of a group microRNAs in the DCM exosomes. microRNA-103a upregulation was confirmed in DCM exosomes. Overexpression microRNA-103a resulted in fibroblast activation and upregulation of Col I, Col III, and CTGF expression in vitro. Our findings uncovered a critical role for exosomal microRNA (microRNA-103a) mediating pathological fibrotic remodeling in DCM.


Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Sign in / Sign up

Export Citation Format

Share Document