scholarly journals A NOVEL ORGAN CULTURE SYSTEM SUPPORTED GERM CELL SURVIVAL IN PRIMATES AND SPERMATOGENESIS IN MICE

2020 ◽  
Vol 114 (3) ◽  
pp. e39
Author(s):  
Kien Tran ◽  
Wenbo Li ◽  
Sung Kwon Cho ◽  
Kyle E. Orwig
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M Komeya ◽  
H Odaka ◽  
T Matsumura ◽  
H Yamanaka ◽  
T Sato ◽  
...  

Abstract Study question Can the gas-liquid interface organ culture system that achieved in vitro spermatogenesis in mice also support in vitro spermatogenesis in human adult testis? Summary answer Although the progression of spermatogenesis was not observed, germ cells were maintained without the degeneration of the architecture in both fresh and cryopreserved testicular tissues. What is known already Although the research on in vitro spermatogenesis have been conducted for 100 years, only the organ culture system using gas-liquid interface method achieved in vitro spermatogenesis in mice. It has not been verified whether this culture system can be applied to other mammals including humans and induce spermatogenesis. Study design, size, duration Testicular tissue was obtained from the transgender patients receiving sex reassignment surgery. Testicular specimens were either immediately processed for cultivation or cryopreserved, using a vitrification freezing protocol. Organ culture of testicular fragments was performed in three different media for a maximum period of 3 weeks to evaluate the short-term changes in the cultured tissues (viability, proliferation and maintenance of germ and somatic cells). Participants/materials, setting, methods Fresh and cryopreserved-thawed testis fragments (1–2 mm3) were cultured using the organ culture system in alpha-MEM with knock-out serum replacement (K group), alpha-MEM with lipid-rich BSA (A group) and DMEM with FBS (D group). Luteinizing hormone, follicle stimulating hormone and testosterone were supplemented. The number of germ cells (using DDX4), proliferative activity of germ cells (using EdU assay) and intratubular cell apoptosis (by TdT-mediated dUTP Nick End Labeling) were evaluated by immunohistochemical staining weekly. Main results and the role of chance The architecture of the seminiferous tubules was maintained until the second week of culture in both the fresh and the cryopreserved culture group. The number of DDX4-positive germ cells per seminiferous tubule in groups D, K, and A was 49 ± 24, 55 ± 21, 50 ± 26 cells/tubule in 1 day, 32 ± 13, 42 ± 7, 36 ± 21 cells/tubule in 1week, respectively. The numbers gradually decreased to 26 ± 8, 24 ± 6 and 27 ± 18 cells/tubule, in 2 weeks, respectively, with no difference among the groups. The number of intratubular EdU-positive cells of groups D, K, and A was 0.2 ± 0.2, 2.8 ± 2.1, 1.1 ± 0.8 cells/tubule at 1 day, 0.1 ± 0.2, 0.5 ± 0.6, 0.3 ± 0.6 cells/tubule at 1 week, respectively. The values were 0.01, 0.05, and 0.03 at 2 weeks. Thus, EdU-positive cells drastically decreased from the first week of culture. The number of DDX4-positive germ cells and the intratubular EdU-positive cells in the cryopreserved culture group was not different from that in the fresh culture group. Limitations, reasons for caution Current organ culture systems are incomplete, being unable to induce human in vitro spermatogenesis. Further research is needed to improve culture condition with the aim of producing fertile sperm of infertile adult male patients. Wider implications of the findings: Our organ culture system could maintain testis structure and germ cells. By using the testis tissues of the transgender patients, which are available with their consent, we will promote the investigation of the culture condition necessary for germ cell proliferation and differentiation. Trial registration number Grant-in-Aid for Scientific Research on Innovative Areas 18H05546, Grant-in-Aid for Young Scientists (A) 17H05098 and Takeda Science Foundation


2013 ◽  
Vol 15 (5) ◽  
pp. R121 ◽  
Author(s):  
Dessislava Z Markova ◽  
Christopher K Kepler ◽  
Sankar Addya ◽  
Hallie B Murray ◽  
Alexander R Vaccaro ◽  
...  

2011 ◽  
Vol 20 (8) ◽  
pp. 1244-1254 ◽  
Author(s):  
Bernice Jim ◽  
Thomas Steffen ◽  
Janet Moir ◽  
Peter Roughley ◽  
Lisbet Haglund

Author(s):  
Retsu Ohki ◽  
M. Matsuki-Fukushima ◽  
K. Fujikawa ◽  
Mitsuori Mayahara ◽  
Kayo Matsuyama ◽  
...  

2000 ◽  
Author(s):  
Shawn Chin Quee ◽  
Hai-Chao Han ◽  
David N. Ku

Abstract Standard tests are needed for evaluating and comparing the mechanical and biological functions of tissue engineered arteries and other vascular grafts. We propose an ex vivo organ culture system as a living system for testing tissue-engineered vascular grafts. This bench-top organ culture system mimics the physiological environment of arteries including the flow, pressure, and the axial stretch. Arterial mechanical properties and physiologic functions including compliance, burst pressure, and contractile functions can be assessed before an expensive long-term animal test is initiated. Test results of natural arteries indicate that organ culture is a valid model for comprehensive evaluation of tissue-engineered vascular grafts.


2000 ◽  
Author(s):  
Hai-Chao Han ◽  
Raymond P. Vito ◽  
Kristin Michael ◽  
David N. Ku

Abstract To study the effect of axial stretch on vascular function and wall remodeling, porcine carotid arteries were cultured under conditions of physiological flow and elevated axial stretch in an ex vivo organ culture system. Smooth muscle cell proliferation was measured by bromodeoxyuridine index. Results showed that cell proliferation was significantly increased in the highly stretched arteries when compared to the normally stretched arteries. This may indicate the feasibility of stimulating new arterial growth by stretching natural arteries.


Sign in / Sign up

Export Citation Format

Share Document