Hydrogen sulfide, a novel small molecule signalling agent, participates in the regulation of ganoderic acids biosynthesis induced by heat stress in Ganoderma lucidum

2019 ◽  
Vol 130 ◽  
pp. 19-30 ◽  
Author(s):  
Jia-Long Tian ◽  
Ang Ren ◽  
Ting Wang ◽  
Jing Zhu ◽  
Yan-Ru Hu ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4484
Author(s):  
Nooruddin-bin Sadiq ◽  
Da-Hye Ryu ◽  
Jwa-Yeong Cho ◽  
A-Hyeon Lee ◽  
Dae-Geun Song ◽  
...  

Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at −80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.


2017 ◽  
Vol 19 (11) ◽  
pp. 4657-4669 ◽  
Author(s):  
Yong-Nan Liu ◽  
Xiao-Xiao Lu ◽  
Dai Chen ◽  
Ya-Ping Lu ◽  
Ang Ren ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1778 ◽  
Author(s):  
Noushina Iqbal ◽  
Mehar Fatma ◽  
Harsha Gautam ◽  
Shahid Umar ◽  
Adriano Sofo ◽  
...  

Photosynthesis is a pivotal process that determines the synthesis of carbohydrates required for sustaining growth under normal or stress situation. Stress exposure reduces the photosynthetic potential owing to the excess synthesis of reactive oxygen species that disturb the proper functioning of photosynthetic apparatus. This decreased photosynthesis is associated with disturbances in carbohydrate metabolism resulting in reduced growth under stress. We evaluated the importance of melatonin in reducing heat stress-induced severity in wheat (Triticum aestivum L.) plants. The plants were subjected to 25 °C (optimum temperature) or 40 °C (heat stress) for 15 days at 6 h time duration and then developed the plants for 30 days. Heat stress led to oxidative stress with increased production of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content and reduced accrual of total soluble sugars, starch and carbohydrate metabolism enzymes which were reflected in reduced photosynthesis. Application of melatonin not only reduced oxidative stress through lowering TBARS and H2O2 content, augmenting the activity of antioxidative enzymes but also increased the photosynthesis in plant and carbohydrate metabolism that was needed to provide energy and carbon skeleton to the developing plant under stress. However, the increase in these parameters with melatonin was mediated via hydrogen sulfide (H2S), as the inhibition of H2S by hypotaurine (HT; H2S scavenger) reversed the ameliorative effect of melatonin. This suggests a crosstalk of melatonin and H2S in protecting heat stress-induced photosynthetic inhibition via regulation of carbohydrate metabolism.


2018 ◽  
Vol 46 (5) ◽  
pp. 1107-1118 ◽  
Author(s):  
Lauren K. Wareham ◽  
Hannah M. Southam ◽  
Robert K. Poole

A gasotransmitter is defined as a small, generally reactive, gaseous molecule that, in solution, is generated endogenously in an organism and exerts important signalling roles. It is noteworthy that these molecules are also toxic and antimicrobial. We ask: is this definition of a gasotransmitter appropriate in the cases of nitric oxide, carbon monoxide and hydrogen sulfide (H2S) in microbes? Recent advances show that, not only do bacteria synthesise each of these gases, but the molecules also have important signalling or messenger roles in addition to their toxic effects. However, strict application of the criteria proposed for a gasotransmitter leads us to conclude that the term ‘small molecule signalling agent’, as proposed by Fukuto and others, is preferable terminology.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanru Hu ◽  
Shakeel Ahmed ◽  
Jiawei Li ◽  
Biaobiao Luo ◽  
Zengyan Gao ◽  
...  

2012 ◽  
Vol 78 (22) ◽  
pp. 7968-7976 ◽  
Author(s):  
Jun-Wei Xu ◽  
Yi-Ning Xu ◽  
Jian-Jiang Zhong

ABSTRACTGanoderic acids produced byGanoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification ofG. lucidumis difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system forG. lucidumwas developed for the first time using mutatedsdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncatedG. lucidumgene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using theAgrobacterium tumefaciens-mediated transformation system. The results showed that the mutatedsdhBsuccessfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomyceteG. lucidumis a promising system to achieve metabolic engineering of the ganoderic acid pathway.


2020 ◽  
Vol 239 ◽  
pp. 126521
Author(s):  
Jia-le Xia ◽  
Chen-Gao Wu ◽  
Ang Ren ◽  
Yan-ru Hu ◽  
Sheng-li Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document