scholarly journals The Crosstalk of Melatonin and Hydrogen Sulfide Determines Photosynthetic Performance by Regulation of Carbohydrate Metabolism in Wheat under Heat Stress

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1778 ◽  
Author(s):  
Noushina Iqbal ◽  
Mehar Fatma ◽  
Harsha Gautam ◽  
Shahid Umar ◽  
Adriano Sofo ◽  
...  

Photosynthesis is a pivotal process that determines the synthesis of carbohydrates required for sustaining growth under normal or stress situation. Stress exposure reduces the photosynthetic potential owing to the excess synthesis of reactive oxygen species that disturb the proper functioning of photosynthetic apparatus. This decreased photosynthesis is associated with disturbances in carbohydrate metabolism resulting in reduced growth under stress. We evaluated the importance of melatonin in reducing heat stress-induced severity in wheat (Triticum aestivum L.) plants. The plants were subjected to 25 °C (optimum temperature) or 40 °C (heat stress) for 15 days at 6 h time duration and then developed the plants for 30 days. Heat stress led to oxidative stress with increased production of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content and reduced accrual of total soluble sugars, starch and carbohydrate metabolism enzymes which were reflected in reduced photosynthesis. Application of melatonin not only reduced oxidative stress through lowering TBARS and H2O2 content, augmenting the activity of antioxidative enzymes but also increased the photosynthesis in plant and carbohydrate metabolism that was needed to provide energy and carbon skeleton to the developing plant under stress. However, the increase in these parameters with melatonin was mediated via hydrogen sulfide (H2S), as the inhibition of H2S by hypotaurine (HT; H2S scavenger) reversed the ameliorative effect of melatonin. This suggests a crosstalk of melatonin and H2S in protecting heat stress-induced photosynthetic inhibition via regulation of carbohydrate metabolism.

Author(s):  
Noushina Iqbal ◽  
Mehar Fatma ◽  
Harsha Gautam ◽  
Shahid Umar ◽  
Adriano Sofo ◽  
...  

Photosynthesis is a pivotal process that determines the synthesis of carbohydrates required for sustaining growth under normal or stress situation. Stress exposure reduces the photosynthetic potential owing to the excess synthesis of reactive oxygen species that disturb the proper functioning of photosynthetic apparatus. This decreased photosynthesis is associated with disturbances in carbohydrate metabolism resulting in reduced growth under stress. We evaluated the importance of melatonin in reducing heat stress-induced severity in wheat plants (Triticum aestivum L.). The plants were subjected to 25 ˚C (optimum temperature) or 40 ˚C (heat stress) for 15 days at 6 hours time duration and then developed the plants for 30 days. Heat stress led to oxidative stress with increased production of TBARS and H2O2 content and reduced accrual of total soluble sugars, starch and carbohydrate metabolism enzymes which are reflected in reduced photosynthesis. Application of melatonin not only reduced oxidative stress through lowering TBARS and H2O2 content, through augmenting the activity of antioxidative enzymes but also increased the photosynthesis in plant and carbohydrate metabolism that is needed to provide energy and carbon skeleton to the developing plant under stress. However, the increase in these parameters with melatonin was mediated via hydrogen sulfide (H2S), as the inhibition of H2S by hypotaurine (HT; H2S inhibitor) reversed the ameliorative effect of melatonin. This suggests a crosstalk of melatonin and H2S in protecting heat stress-induced photosynthetic inhibition via regulation of carbohydrate metabolism.


2020 ◽  
Vol 176 ◽  
pp. 113819 ◽  
Author(s):  
Sevda Gheibi ◽  
Alan P. Samsonov ◽  
Shahsanam Gheibi ◽  
Alexandra B. Vazquez ◽  
Khosrow Kashfi

2001 ◽  
Vol 91 (5) ◽  
pp. 2282-2288 ◽  
Author(s):  
P. U. Saunders ◽  
M. J. Watt ◽  
A. P. Garnham ◽  
L. L. Spriet ◽  
M. Hargreaves ◽  
...  

To investigate the influence of heat stress on the regulation of skeletal muscle carbohydrate metabolism, six active, but not specifically trained, men performed 5 min of cycling at a power output eliciting 70% maximal O2 uptake in either 20°C (Con) or 40°C (Heat) after 20 min of passive exposure to either environmental condition. Although muscle temperature (Tmu) was similar at rest when comparing trials, 20 min of passive exposure and 5 min of exercise increased ( P < 0.05) Tmu in Heat compared with Con (37.5 ± 0.1 vs. 36.9 ± 0.1°C at 5 min for Heat and Con, respectively). Rectal temperature and plasma epinephrine were not different at rest, preexercise, or 5 min of exercise between trials. Although intramuscular glycogen phosphorylase and pyruvate dehydrogenase activity increased ( P < 0.05) at the onset of exercise, there were no differences in the activities of these regulatory enzymes when comparing Heat with Con. Accordingly, glycogen use in the first 5 min of exercise was not different when comparing Heat with Con. Similarly, no differences in intramuscular concentrations of glucose 6-phosphate, lactate, pyruvate, acetyl-CoA, creatine, phosphocreatine, or ATP were observed at any time point when comparing Heat with Con. These results demonstrate that, whereas mild heat stress results in a small difference in contracting Tmu, it does not alter the activities of the key regulatory enzymes for carbohydrate metabolism or glycogen use at the onset of exercise, when plasma epinephrine levels are unaltered.


2021 ◽  
pp. 102927
Author(s):  
Yulan Zhao ◽  
Yu Zhuang ◽  
Yan Shi ◽  
Zheng Xu ◽  
Changming Zhou ◽  
...  
Keyword(s):  

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 373
Author(s):  
Joshua J. Scammahorn ◽  
Isabel T. N. Nguyen ◽  
Eelke M. Bos ◽  
Harry Van Goor ◽  
Jaap A. Joles

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.


Sign in / Sign up

Export Citation Format

Share Document