The LaeA orthologue in Epichloë festucae is required for symbiotic interaction with Lolium perenne

2019 ◽  
Vol 129 ◽  
pp. 74-85 ◽  
Author(s):  
M. Rahnama ◽  
P. Maclean ◽  
D.J. Fleetwood ◽  
R.D. Johnson
Author(s):  
Nazanin Noorifar ◽  
Matthew Savoian ◽  
Arvina Ram ◽  
Yonathan Lukito ◽  
Berit Hassing ◽  
...  

Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network, and also grows as an epiphyte. However, little is known about the cell wall remodelling mechanisms required to avoid host defence and maintain intercalary growth within the host. Here we use a suite of molecular probes to show that the E. festucae cell wall is remodelled by conversion of chitin to chitosan during infection of L. perenne seedlings as the hyphae switch from free-living to endophytic growth. When hyphae transition from endophytic to epiphytic growth the cell wall is remodelled from predominantly chitosan to chitin. This conversion from chitin to chitosan is catalysed by chitin deacetylase. The genome of E. festucae encodes three putative chitin deacetylases, two of which (cdaA and cdaB) are expressed in planta. Deletion of either of these genes results in disruption of fungal intercalary growth in the intercellular spaces of plants infected with these mutants. These results establish that these two genes are required for maintenance of the mutualistic symbiotic interaction between E. festucae and L. perenne.


2015 ◽  
Vol 28 (1) ◽  
pp. 69-85 ◽  
Author(s):  
Yvonne Becker ◽  
Carla J. Eaton ◽  
Emma Brasell ◽  
Kimberley J. May ◽  
Matthias Becker ◽  
...  

Epichloë festucae is a mutualistic symbiont that systemically colonizes the intercellular spaces of Lolium perenne leaves to form a highly structured and interconnected hyphal network. In an Agrobacterium tumefaciens T-DNA forward genetic screen, we identified a mutant TM1066 that had a severe host interaction phenotype, causing stunting and premature senescence of the host. Molecular analysis revealed that the mutation responsible for this phenotype was in the cell-wall integrity (CWI) mitogen-activated protein kinase kinase (MAPKK), mkkA. Mutants generated by targeted deletion of the mkkA or the downstream mpkA kinase recapitulated the phenotypes observed for TM1066. Both mutants were defective in hyphal cell–cell fusion, formed intrahyphal hyphae, had enhanced conidiation, and showed microcyclic conidiation. Transmission electron microscopy and confocal microscopy analysis of leaf tissue showed that mutant hyphae were more abundant than the wild type in the intercellular spaces and colonized the vascular bundles. Hyphal branches failed to fuse but, instead, grew past one another to form bundles of convoluted hyphae. Mutant hyphae showed increased fluorescence with AF488-WGA, indicative of increased accessibility of chitin, a hypothesis supported by changes in the cell-wall ultrastructure. These results show that the CWI MAPK pathway is a key signaling pathway for controlling the mutualistic symbiotic interaction between E. festucae and L. perenne.


2021 ◽  
Vol 9 (1) ◽  
pp. 140
Author(s):  
Ruying Wang ◽  
Simin Luo ◽  
Bruce B. Clarke ◽  
Faith C. Belanger

Strong creeping red fescue (Festuca rubra subsp. rubra) is a commercially important low-maintenance turfgrass and is often naturally infected with the fungal endophyte Epichloë festucae. Epichloë spp. are endophytes of several cool-season grass species, often conferring insect resistance to the grass hosts due to the production of toxic alkaloids. In addition to insect resistance, a unique feature of the strong creeping red fescue/E. festucae symbiosis is the endophyte-mediated disease resistance to the fungal pathogen Clarireedia jacksonii, the causal agent of dollar spot disease. Such disease resistance is not a general feature of other grass/ Epichloë interactions. E. festucae isolates infecting red fescue have an antifungal protein gene Efe-afpA, whereas most other Epichloë spp. do not have a similar gene. The uniqueness of this gene suggests it may, therefore, be a component of the unique disease resistance seen in endophyte-infected red fescue. Here, we report the generation of CRISPR-Cas9 Efe-afpA gene knockouts with the goal of determining if absence of the protein in endophyte-infected Festuca rubra leads to disease susceptibility. However, it was not possible to infect plants with the knockout isolates, although infection was possible with the wild type E. festucae and with complemented isolates. This raises the interesting possibility that, in addition to having antifungal activity, the protein is required for the symbiotic interaction. The antifungal protein is a small secreted protein with high expression in planta relative to its expression in culture, all characteristics consistent with effector proteins. If Efe-AfpA is an effector protein it must be specific to certain interactions, since most Epichloë spp. do not have such a gene in their genomes.


2019 ◽  
Vol 8 (1) ◽  
pp. 33 ◽  
Author(s):  
Mostafa Rahnama ◽  
Paul Maclean ◽  
Damien J. Fleetwood ◽  
Richard D. Johnson

VelA (or VeA) is a key global regulator in fungal secondary metabolism and development which we previously showed is required during the symbiotic interaction of Epichloë festucae with perennial ryegrass. In this study, comparative transcriptomic analyses of ∆velA mutant compared to wild-type E. festucae, under three different conditions (in culture, infected seedlings, and infected mature plants), were performed to investigate the impact of VelA on E. festucae transcriptome. These comparative transcriptomic studies showed that VelA regulates the expression of genes encoding proteins involved in membrane transport, fungal cell wall biosynthesis, host cell wall degradation, and secondary metabolism, along with a number of small secreted proteins and a large number of proteins with no predictable functions. In addition, these results were compared with previous transcriptomic experiments that studied the impact of LaeA, another key global regulator of secondary metabolism and development that we have shown is important for E. festucae–perennial ryegrass interaction. The results showed that although VelA and LaeA regulate a subset of E. festucae genes in a similar manner, they also regulated many other genes independently of each other suggesting specialised roles.


2007 ◽  
Vol 13 ◽  
pp. 480-480
Author(s):  
K.J. May ◽  
M.K. Bryant ◽  
X. Zhang ◽  
B. Ambrose ◽  
B. Scott

Epichloë festucae systemically colonises the intercellular spaces of perennial ryegrass (Lolium perenne) aerial tissues forming a mutually beneficial association between the fungus and host plant.


2012 ◽  
Vol 75 ◽  
pp. 128-139 ◽  
Author(s):  
Albert Koulman ◽  
T. Verne Lee ◽  
Karl Fraser ◽  
Linda Johnson ◽  
Vickery Arcus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document