scholarly journals Strain rate dependent micromechanical properties of NiTi shape memory alloys: laser powder bed fusion versus casting

2021 ◽  
pp. 100055
Author(s):  
Md. Minhazul Islam ◽  
Parisa Bayati ◽  
Mohammadreza Nematollahi ◽  
Ahmadreza Jahadakbar ◽  
Mohammad Elahinia ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1522
Author(s):  
Mohammadreza Nematollahi ◽  
Guher P. Toker ◽  
Keyvan Safaei ◽  
Alejandro Hinojos ◽  
S. Ehsan Saghaian ◽  
...  

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were characterized across a wide range of PPs (laser power, scanning speed, and hatch spacing) and correlated with energy density. The optimum laser parameters for defect-free and functional samples were found to be in the range of approximately 60–100 J/mm3. Below an energy density of 60 J/mm3, porosity formation due to lack-of-fusion is the limiting factor. Samples fabricated with energy densities of 60–100 J/mm3 showed comparable thermomechanical behavior in comparison with the starting as-cast material, and samples fabricated with higher energy densities (>100 J/mm3) showed very high transformation temperatures but poor thermomechanical behavior. Poor properties for samples with higher energies were mainly attributed to the excessive Ni loss and resultant change in the chemical composition of the matrix, as well as the formation of cracks and porosities. Although energy density was found to be an important factor, the outcome of this study suggests that each of the PPs should be selected carefully. A maximum actuation strain of 1.67% at 400 MPa was obtained for the sample with power, scan speed, and hatch space of 100 W, 400 mm/s, and 140 µm, respectively, while 1.5% actuation strain was obtained for the starting as-cast ingot. These results can serve as a guideline for future studies on optimizing PPs for fabricating functional HTSMAs.


2019 ◽  
Vol 9 (4) ◽  
pp. 1214-1220
Author(s):  
Ian McCue ◽  
Christopher Peitsch ◽  
Tim Montalbano ◽  
Andrew Lennon ◽  
Joseph Sopcisak ◽  
...  

Abstract


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2902 ◽  
Author(s):  
Xiaoyang Liu ◽  
Keito Sekizawa ◽  
Asuka Suzuki ◽  
Naoki Takata ◽  
Makoto Kobashi ◽  
...  

In the present study, in order to elucidate geometrical features dominating deformation behaviors and their associated compressive properties of lattice structures, AlSi10Mg lattice structures with three different unit cells were fabricated by laser powder bed fusion. Compressive properties were examined by compression and indentation tests, micro X-ray computed tomography (CT), together with finite element analysis. The truncated octahedron- unit cell (TO) lattice structures exhibited highest stiffness and plateau stress among the studied lattice structures. The body centered cubic-unit cell (BCC) and TO lattice structures experienced the formation of shear bands with stress drops, while the hexagon-unit cell (Hexa) lattice structure behaved in a continuous deformation and flat plateau region. The Hexa lattice structure densified at a smaller strain than the BCC and TO lattice structures, due to high density of the struts in the compressive direction. Static and high-speed indentation tests revealed that the TO and Hexa exhibited slight strain rate dependence of the compressive strength, whereas the BCC lattice structure showed a large strain rate dependence. Among the lattice structures in the present study, the TO lattice exhibited the highest energy absorption capacity comparable to previously reported titanium alloy lattice structures.


Sign in / Sign up

Export Citation Format

Share Document