Development of a continental shelf acoustic telemetry array to support behavioral research of fish in a high energy ocean environment

2022 ◽  
Vol 247 ◽  
pp. 106177
Author(s):  
Jennifer L. Cudney ◽  
Charles W. Bangley ◽  
Andrea Dell’Apa ◽  
Eric Diaddorio ◽  
Roger A. Rulifson
Author(s):  
Eric N. Powell ◽  
Roger L. Mann ◽  
M. Chase Long ◽  
Jeremy R. Timbs ◽  
Kelsey M. Kuykendall

1984 ◽  
Vol 1 (19) ◽  
pp. 131 ◽  
Author(s):  
Angus D. Gordon ◽  
John G. Hoffman

Engineering projects on the continental shelf off Sydney, Australia, have stimulated investigation into the sediment transport system of the shelf. Investigation activities associated with these projects have included: definition of sea bed morphology, sediment distribution and bedform characteristics; monitoring of steady and wave induced currents; wind data collection; suspended sediment sampling; bottom camera sediment movement investigations and analytical studies of sediment reaction to sea bed forcing functions. Sea bed velocity exceedence relationships for both wave oscillations and steady currents have been determined at depths of 24 m, 60 m and 80 m. Thresholds of sediment movement have been defined. Relative sediment transport computations have been undertaken and studies of suspended sediment concentration profiles are in progress so that absolute transport rates can be determined. The prevailing conditions, which include a mainly south bound current, are seldom sufficient to induce entrainment of shelf sediments. Transport events mainly result from major storms in the Tasman Sea which produce both high energy waves and north bound currents. Although these events are rare and short lived, the combined wave and current shear produced at the sea bed during the events gives rise to entrainment conditions which result in their dominance of the shelf sediment transport system.


1985 ◽  
Vol 4 (2) ◽  
pp. 117-125 ◽  
Author(s):  
John W. Murray

Abstract. The regions studied are all of mid continental shelf depth (70–145 m) and have bottom waters of normal marine salinity. The North Sea has lower bottom water temperatures than those to the west of Scotland. However, the major difference between the two regions is one of tidal and/or wave energy: the northern North Sea is a low energy environment of muddy sand deposition whereas the sampled part of the continental shelf west and north of Scotland is a moderate to high energy environment of medium to coarse biogenic carbonate sedimentation.The physical differences between the two main areas are reflected in the living and dead foraminiferal assemblages. The northern North Sea is a region of free-living species whereas the continental shelf west of Scotland has immobile and mobile attached species living on firm substrates. The northern North Sea is very fertile and has high standing crop values.The dead assemblages are small in size and very abundant. To the west of Scotland the sea is less fertile, standing crop values are low, the dead assemblages are moderate to large in size and reasonably abundant due to the slow rate of dilution by sediment.


Sedimentology ◽  
2013 ◽  
Vol 60 (7) ◽  
pp. 1755-1768 ◽  
Author(s):  
Andrew N. Green ◽  
J. Andrew G. Cooper ◽  
Rio Leuci ◽  
Zane Thackeray

2016 ◽  
Vol 33 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Mohsen Badiey ◽  
Lin Wan ◽  
James F. Lynch

AbstractDuring the Shallow Water Acoustic Experiment 2006 (SW06) conducted on the New Jersey continental shelf in the summer of 2006, detailed measurements of the ocean environment were made along a fixed reference track that was parallel to the continental shelf. The time-varying environment induced by nonlinear internal waves (NLIWs) was recorded by an array of moored thermistor chains and by X-band radars from the attending research vessels. Using a mapping technique, the three-dimensional (3D) temperature field for over a month of NLIW events is reconstructed and analyzed to provide a statistical summary of important NLIW parameters, such as the NLIW propagation speed, direction, and amplitude. The results in this paper can be used as a database for studying the NLIW generation, propagation, and fidelity of nonlinear internal wave models.


Sign in / Sign up

Export Citation Format

Share Document