Isoangustone A induces autophagic cell death in colorectal cancer cells by activating AMPK signaling

Fitoterapia ◽  
2021 ◽  
pp. 104935
Author(s):  
Shunan Tang ◽  
Sina Cai ◽  
Shuai Ji ◽  
Xiaojin Yan ◽  
Weijia Zhang ◽  
...  
2018 ◽  
Vol 119 (4) ◽  
pp. 3763-3774 ◽  
Author(s):  
Ming‐Chen Ba ◽  
Hui Long ◽  
Shuai Wang ◽  
Yin‐Bing Wu ◽  
Bo‐Huo Zhang ◽  
...  

2018 ◽  
Vol 75 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Shunli Luo ◽  
Ziyin Li ◽  
Lianzhi Mao ◽  
Siqiang Chen ◽  
Suxia Sun

2019 ◽  
Vol 12 (2) ◽  
pp. 629-638
Author(s):  
N. N. Bahari ◽  
S. Y. N. Jamaludin ◽  
A. H. Jahidin ◽  
M. N. Zahary ◽  
A. B. Mohd Hilmi

The transient receptor potential vanilloid member 4 (TRPV4) is a non-selective calcium (Ca2+)-permeable channel which is widely expressed in different types of tissues including the lungs, liver, kidneys and salivary gland. TRPV4 has been shown to serve as a cellular sensor where it is involved in processes such as osmoregulation, cell volume regulation and thermoregulation. Emerging evidence suggests that TRPV4 also plays important roles in several aspects of cancer progression. Despite the reported roles of TRPV4 in several forms of cancers, the role of TRPV4 in human colorectal cancer remains largely unexplored. In the present study, we sought to establish the potential role of TRPV4 in colorectal cancer by assessing TRPV4 expression levels and investigating whether TRPV4 pharmacological modulation may alter cell proliferation, cell cycle and cell death in colorectal cancer cells. Quantitative real-time PCR analysis revealed that TRPV4 mRNA levels were significantly lower in HT-29 cells than normal colon CCD-18Co cells. However, TRPV4 mRNA was absent in HCT-116 cells. Pharmacological activation of TRPV4 with GSK1016790A significantly enhanced the proliferation of HT-29 cells while TRPV4 inhibition using RN 1734 decreased their proliferation. Increased proliferation in GSK1016790A-treated HT-29 cells was attenuated by co-treatment with RN 1734. Pharmacological modulation of TRPV4 had no effect on the cell cycle progression but promoted cell death in HT-29 cells. Taken together, these findings suggest differential TRPV4 expression levels in human colorectal cancer cells and that pharmacological modulation of TRPV4 produces distinct effects on the proliferation and induces cell death in HT-29 cells.


2020 ◽  
Vol 21 (23) ◽  
pp. 9315
Author(s):  
Eun Joo Jung ◽  
Won Sup Lee ◽  
Anjugam Paramanantham ◽  
Hye Jung Kim ◽  
Sung Chul Shin ◽  
...  

Plant-derived natural polyphenols exhibit anticancer activity without showing any noticeable toxicities to normal cells. The aim of this study was to investigate the role of p53 on the anticancer effect of polyphenols isolated from Korean Artemisia annua L. (pKAL) in HCT116 human colorectal cancer cells. We confirmed that pKAL induced reactive oxygen species (ROS) production, propidium iodide (PI) uptake, nuclear structure change, and acidic vesicles in a p53-independent manner in p53-null HCT116 cells through fluorescence microscopy analysis of DCF/PI-, DAPI-, and AO-stained cells. The pKAL-induced anticancer effects were found to be significantly higher in p53-wild HCT116 cells than in p53-null by hematoxylin staining, CCK-8 assay, Western blot, and flow cytometric analysis of annexin V/PI-stained cells. In addition, expression of ectopic p53 in p53-null cells was upregulated by pKAL in both the nucleus and cytoplasm, increasing pKAL-induced cell death. Moreover, Western bot analysis revealed that pKAL-induced cell death was associated with upregulation of p53-dependent targets such as p21, Bax and DR5 and cleavage of PARP1 and lamin A/C in p53-wild HCT116 cells, but not in p53-null. Taken together, these results indicate that p53 plays an important role in enhancing the anticancer effects of pKAL by upregulating p53 downstream targets and inducing intracellular cell death processes.


Sign in / Sign up

Export Citation Format

Share Document