On-line measurement of particle size distribution and mass flow rate of particles in a pneumatic suspension using combined imaging and electrostatic sensors

2005 ◽  
Vol 16 (5) ◽  
pp. 309-314 ◽  
Author(s):  
Robert M. Carter ◽  
Yong Yan ◽  
Stuart D. Cameron
2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Linjing Zhu ◽  
Hongqiao Lan ◽  
Bingjing He ◽  
Wei Hong ◽  
Jun Li

Encapsulation of menthol in beeswax was prepared by a modified particles from gas-saturated solutions (PGSS) process with controlling the gas-saturated solution flow rate. Menthol/beeswax particles with size in the range of 2–50 μm were produced. The effects of the process conditions, namely, the pre-expansion pressure, pre-expansion temperature, gas-saturated solution flow rate, and menthol composition, on the particle size, particle size distribution, and menthol encapsulation rate were investigated. Results indicated that in the range of studied conditions, increase of the pressure, decrease of the gas-saturated solution flow rate, and decrease of the menthol mass fraction can decrease the particle size and narrow particle size distribution of the produced menthol/beeswax microparticles. An N2-blowing method was proposed to measure the menthol release from the menthol/beeswax microparticles. Results showed that the microparticles have obvious protection of menthol from its volatilization loss.


2011 ◽  
Vol 243-249 ◽  
pp. 4827-4830
Author(s):  
Hao Yu Li ◽  
Jun Nan ◽  
Wei Peng He

The coagulation experiment, with Kaolin as objects, aluminum chloride (PAC) as coagulant and hydrated MnO2 as coagulant aid, were accomplished under different conditions. In the experiment, the particle size distribution and turbidity in water were detected by on-line detector. The results show that increase PAC dosage, original turbidity, hydrated MnO2 dosage and coagulation time will make the fractal dimensions of floc growth in micro-coagulation stage increase. The fractal dimensions of floc growth in micro-coagulation stage increasing means more particle size <5µm flocs are removed. Hydrated MnO2 can strengthen micro-coagulation.


Sign in / Sign up

Export Citation Format

Share Document