liquid mass flow rate
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
pp. 32-41
Author(s):  
Rustam Rashidovich Tukhvatullin ◽  
Alexey Valentinovich Shchelchkov

In the context of the needs of the leading sectors of the world economy, the current state of metrological support for measuring units of mass and volume of a liquid in a flow, mass and volume flow rates of a liquid in the range of micro-flow rates of 10–5–103 ml/min is considered. Based on the results of the analytical review, the main metrological and operating characteristics of national standards are presented. The basic principles of generating a fluid flow in national gravimetric and volumetric standards when measuring the mass and volume of a fluid by the dynamic weighing method have been determined. Constructive solutions and principles of operation of key modules of national standards are considered. Methods for filling a liquid into a storage tank and designs of storage tanks are determined, taking into account the minimization of the effect of liquid evaporation, the influence of capillary force and buoyancy. The main sources of uncertainty in measuring the mass and volume of a liquid by the dynamic weighing method and methods for minimizing these uncertainties are considered. A modified model of dynamic measurement of liquid mass flow rate is proposed, taking into account the main sources of uncertainty. A comparative assessment of the influence of sources of uncertainty on the metrological characteristics of national standards is presented.


Author(s):  
Ippei Oshima ◽  
Mikito Furuichi

Abstract The Steam turbine is widely used for generating electricity, in the thermal, nuclear and geothermal power generation systems. A wet loss is known as one of the degrading factors of the performance. To reduce the amount of liquid phase generated by condensation and atomization from nozzles, the prediction of the distribution of liquid mass flow rate inside the turbine is important. However, the quantitative understanding and the prediction method of the liquid flow inside the turbine remain unclear because physics inside a turbine is consisting of complex multiscale and multiphase events. In the present study, we proposed a theoretical model predicting the motion of droplet particles in gas flow based on Stokes number whose model does not require numerical simulation. We also conducted the numerical validation test using three-dimensional Eulerian-Lagrangian simulation for the problem with turbine blade T106. The numerical simulation shows that the particle motion is characterized by the Stokes number, that is consistent with the assumption of the theoretical model and previous studies. When Stokes number is smaller than one, the particle trajectory just follows the gas flow streamline and avoids the impacts on the surface of T106. With increasing Stokes number, the particles begin to deviate from the gas flow. As a result, many particles collide with the surface of T106 when the Stokes number is approximately one. When the Stokes number is extremely larger than one, particles move straight regardless of the background gas flow. The good agreements between the theoretical predictions and numerical experiment results justify the use of our proposed theoretical model for the prediction of the particle flow around the turbine blade.


Author(s):  
Julien Tillou ◽  
Julien Leparoux ◽  
Jérome Dombard ◽  
Eleonore Riber ◽  
Bénédicte Cuenot

Abstract Non-reactive Lagrangian two-phase flow Large-Eddy Simulations (LES) of an industrial aeronautical injector are carried out with the compressible AVBP code and compared with an experimental database in an industrial context. While most of the papers are focused on simplex atomiser with only one fuel passage, we propose to account for specific industrial configurations based on duplex atomiser where both the primary and the secondary passages operate. For the second passage, the fuel spray angle is wider, leading to spray / wall interactions and airblast atomization. The computation domain consists in the experimental mock-up without the fuel atomizer part. The liquid-injection boundary condition is applied through the phenomenological FIM-UR model, which prescribes droplet velocities and diameter distribution at the atomizer tip based on both the atomizer characteristics and the liquid mass flow rate. No specific models are used for spray / wall interaction, and droplets are assumed to slip on the walls. The numerical results are compared with the experimental database for Jet-A1 fuel, built through Phase Doppler Anemometry instrumentation, allowing access to local information regarding the droplets velocity components. Three LES are performed for pressure loss ranging from 1 to 3%, covering an important part of the engine operating conditions, from high altitude relight to cruise operating point. Mean and fluctuating velocity profiles show a relatively good agreement with measurements, for all the operating points. It confirms that the spray/wall interactions, airblast and secondary breakup models may be neglected as a first approximation for configurations where only a relatively small amount of fuel impacts the wall.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Sankar Muthukrishnan ◽  
Vinod Srinivasan

Abstract The role of contact-line evaporation on spray impingement heat transfer is systematically studied by spraying de-ionized water on silicon substrates with micropillar arrays. The height, the pillar diameter, and the spacing of the micropillar array were varied from 5 to 50 μm while keeping the porosity constant at 0.75. An air-assisted nozzle was used to create a liquid spray with a Sauter mean diameter (SMD) of ∼22 to 42 μm depending on flow conditions. Most test runs were conducted at a water flow rate of 30 ml/min and an air-liquid mass flow rate ratio of ∼0.57. The results show a continuous increase in the critical heat flux (CHF) as the pillar diameter is decreased. The effects of pillar height are nonmonotonic, with CHF and peak heat transfer coefficient attaining a maximum as the height-to-diameter ratio approaches unity. Values of CHF as high as 830 W/cm2 were achieved, along with cooling efficiencies of 49%. The effect of liquid flow rates and air-flow rates were also investigated independently using textured surfaces.


Author(s):  
Matej Tekavčič ◽  
Boštjan Končar ◽  
Ivo Kljenak

The present study investigates the influence of liquid inlet modelling on the development of liquid waves in isothermal churn flow of air and water in a vertical pipe. The porous wall liquid inlet section, commonly used in experiments, is modelled as a simple inlet flow area in our simulation. Using the liquid mass flow rate from experiment, the magnitude of the wall normal velocity component is determined by the inlet area which is used as a modelling parameter. This parameter significantly affects the calculated liquid wave frequency. The inlet liquid velocity profile was not measured in available experiments and thus presents a major source of uncertainty in simulations. The parametric analysis shows that a suitable liquid inlet area can be determined over the range of liquid flow rates, leading to good agreement of simulated and measured wave frequencies. A three-dimensional simulation was performed using the multiphase solver interFoam from the open-source code OpenFOAM.


2015 ◽  
Vol 36 (2) ◽  
pp. 3-25
Author(s):  
Jarosław Karwacki ◽  
Helena Nowakowska ◽  
Marcin Lackowski ◽  
Dariusz Butrymowicz

Abstract The paper presents numerical simulation of two-phase flow in a heated capillary with evaporation on the meniscus. To solve the problem, a model of evaporation from meniscus was developed in which the dynamics of liquid-vapour interface is described by the Cahn-Hilliard equation. The numerical simulations were performed using commercial software for 2D axially symmetric case. The flow evolution was analysed for different values of heat transfer coefficient at the capillary wall and inlet liquid mass flow rate.


Author(s):  
Chihiro Inoue ◽  
Toshinori Watanabe ◽  
Takehiro Himeno ◽  
Seiji Uzawa

With increasing focus on environmental effects and the need for fuel diversity in gas turbines, good liquid atomization is increasingly important. It is known that impinging atomization is able to produce fine drops by impingement of fast liquid jets. However, the atomization characteristics deteriorate at lower injection velocities. In this study, for improving atomization characteristics under a wide range of injection velocity, an effective technique is verified utilizing a small amount of gas (microjet) injection. The microjet is supplied from a pressurized reservoir independent of the liquid supply system, and it is injected from the center of the liquid nozzles toward the impingement point. To clarify the flow field and the mechanism of the effectiveness, experimental visualizations and drop size measurements are carried out. It is found that atomization is remarkably promoted when the dynamic pressure of microjet overcomes that of the liquid at the impingement point. By the microjet injection with only 1% of liquid mass flow rate, Sauter mean diameter (SMD) becomes one-tenth of the original SMD. In addition, optimized atomization efficiency is successfully achieved when the dynamic pressure of the microjet is two times that of the liquid at the impingement point.


Author(s):  
J. A. Esfahani ◽  
S. Koohi-Fayegh

The present work investigates an analytical study on the problem of laminar film condensation on a nanosphere. Due to the microscale interaction, the problem is analyzed by taking into account the effects of slip in velocity and jump in temperature. A relation is derived for the liquid film thickness in the form of a nonlinear differential equation which is solved numerically using the fourth order Runge–Kutta method. Finally, the effect of velocity slip and temperature jump on different condensation parameters including the liquid film thickness, velocity and temperature profiles, Nusselt number, and liquid mass flow rate is discussed. It is found that the increase in the velocity slip and temperature jump results in a thinner liquid film and therefore increases the heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document