Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica

2021 ◽  
Vol 97 ◽  
pp. 103755
Author(s):  
Lifang Feng ◽  
Weiwei Bi ◽  
Shuai Chen ◽  
Junli Zhu ◽  
Xiaoxiang Liu
2015 ◽  
Vol 29 (4) ◽  
pp. 161-170 ◽  
Author(s):  
Catarina Silva ◽  
Ana Cláudia Ferreira ◽  
Isabel Soares ◽  
Francisco Esteves

Abstract. The present study examined physiological reactivity to emotional stimuli as a function of attachment style. Skin conductance responses (SCRs) and heart rate (HR) changes were simultaneously recorded while participants engaged in a visual attentional task. The task included positive, neutral, and negative emotional pictures, and required the identification of a target (neutral picture rotated 90° to the left or right), among a stream of pictures in which an emotional distracter (positive or negative) was presented. Participants additionally rated each of the emotional distracters for valence and arousal. Behavioral results on the attentional task showed that positive pictures facilitated overall target detection for all participants, compared to negative and neutral pictures, and that anxiously attached participants had significantly lower accuracy scores, relative to the other groups. Affective ratings indicated that positive pictures were rated as being more pleasant than negative ones, although no differences were found in HR changes to picture valence. In contrast, negative pictures were evaluated as being highly arousing. Consistent with this, negative pictures elicited larger SCRs in both insecure anxious and avoidant groups, especially for the anxious while the secure group showed SCRs unaffected by stimuli’s arousal. Present results show that individuals with different attachment styles reveal distinct patterns of attentional bias, appraisal, and physiological reactivity toward emotionally arousing stimuli. These findings further highlight the regulatory function of the attachment system.


2020 ◽  
Vol 20 (2) ◽  
pp. 38-40
Author(s):  
A. Levitsky ◽  
A. Lapinska ◽  
I. Selivanskaya

The article analyzes the role of essential polyunsaturated fatty acids (PUFA), especially omega-3 series in humans and animals. The biosynthesis of essential PUFA in humans and animals is very limited, so they must be consumed with food (feed). Тhe ratio of omega-3 and omega-6 PUFA is very important. Biomembranes of animal cells contain about 30% PUFA with a ratio of ω-6/ ω-3 1-2. As this ratio increases, the physicochemical properties of biomembranes and the functional activity of their receptors change. The regulatory function of essential PUFA is that in the body under the action of oxygenase enzymes (cyclooxygenase, lipoxygenase) are formed extremely active hormone-like substances (eicosanoids and docosanoids), which affect a number of physiological processes: inflammation, immunity, metabolism. Moreover, ω-6 PUFA form eicosanoids, which have pro-inflammatory, immunosuppressive properties, and ω-3 PUFAs form eicosanoids and docosanoids, which have anti-inflammatory and immunostimulatory properties. Deficiency of essential PUFA, and especially ω-3 PUFA, leads to impaired development of the body and its state of health, which are manifestations of avitaminosis F. Prevention and treatment of avitaminosis F is carried out with drugs that contain PUFA. To create new, more effective vitamin F preparations, it is necessary to reproduce the model of vitamin F deficiency. An experimental model of vitamin F deficiency in white rats kept on a fat –free diet with the addition of coconut oil, which is almost completely free of unsaturated fatty acids, and saturated fatty acids make up almost 99 % of all fatty acids was developed. The total content of ω-6 PUFA (sum of linoleic and arachidonic acids), the content of ω-3 PUFA (α-linolenic, eicosapentaenoic and docosahexaenoic acids) in neutral lipids (triglycerides and cholesterol esters) defined. Тhe content of ω-6 PUFA under the influence of coconut oil decreased by 3.3 times, and the content of ω-3 PUFA - by 7.5 times. Тhe influence of coconut oil, the content of ω-6 PUFA decreased by 2.1 times, and the content of ω-3 PUFA - by 2.8 times. The most strongly reduces the content of ω-3 PUFA, namely eicosapentaenoic, coconut oil, starting from 5 %. Consumption of FFD with a content of 15 % coconut oil reduces the content of eicosapentaenoic acid to zero, ie we have an absolute deficiency of one of the most important essential PUFAs, which determined the presence of vitamin F deficiency.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2018 ◽  
Vol 16 (1) ◽  
pp. 44-53
Author(s):  
Marina Campos Rocha ◽  
Camilla Alves Santos ◽  
Iran Malavazi

Different signaling cascades including the Cell Wall Integrity (CWI), the High Osmolarity Glycerol (HOG) and the Ca2+/calcineurin pathways control the cell wall biosynthesis and remodeling in fungi. Pathogenic fungi, such as Aspergillus fumigatus and Candida albicans, greatly rely on these signaling circuits to cope with different sources of stress, including the cell wall stress evoked by antifungal drugs and the host’s response during infection. Hsp90 has been proposed as an important regulatory protein and an attractive target for antifungal therapy since it stabilizes major effector proteins that act in the CWI, HOG and Ca2+/calcineurin pathways. Data from the human pathogen C. albicans have provided solid evidence that loss-of-function of Hsp90 impairs the evolution of resistance to azoles and echinocandin drugs. In A. fumigatus, Hsp90 is also required for cell wall integrity maintenance, reinforcing a coordinated function of the CWI pathway and this essential molecular chaperone. In this review, we focus on the current information about how Hsp90 impacts the aforementioned signaling pathways and consequently the homeostasis and maintenance of the cell wall, highlighting this cellular event as a key mechanism underlying antifungal therapy based on Hsp90 inhibition.


Sign in / Sign up

Export Citation Format

Share Document