Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water

2015 ◽  
Vol 168 ◽  
pp. 302-310 ◽  
Author(s):  
Hai-ming Chen ◽  
Xiong Fu ◽  
Zhi-gang Luo
Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5649
Author(s):  
Hanna Pińkowska ◽  
Małgorzata Krzywonos ◽  
Paweł Wolak ◽  
Przemysław Seruga ◽  
Agata Górniak ◽  
...  

Waste solid residue from the hydrothermal extraction of pectin derived from sugar beet pulp was used as feedstock in the production of 5-hydroxymethylfurfural (5-HMF). The depolymerization of pectin-free sugar beet pulp (PF-SBP) to monosaccharides and their dehydration to 5-HMF were conducted in subcritical water using a batch reactor. The experimental design methodology was used in order to model the hydrothermal process and to optimize the operational parameters of the reaction, namely temperature and holding time. These parameters are required to achieve the highest yield of 5-HMF. The model predicts, in good agreement with experimental results (R2 = 0.935), an optimal yield of 5-HMF (of approximately 38% in relation to the cellulosic fraction content in the PF-SBP) at a temperature of 192.5 °C and a holding time of about 51.2 min. 5-HMF was successfully isolated from the reaction mixture using the liquid–liquid extraction method. The results are suitable for industrial upscaling and may become an incentive to introduce a new, environmentally friendly, uncomplicated, and efficient waste treatment method. The method would be used to treat products from the sugar refining industry, the treatment of which has proven to be problematic until now.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1413
Author(s):  
Seyed Hadi Peighambardoust ◽  
Maryam Jafarzadeh-Moghaddam ◽  
Mirian Pateiro ◽  
José M. Lorenzo ◽  
Rubén Domínguez

The objective of this study was to characterize the properties of pectin extracted from sugar beet pulp using subcritical water (SWE) as compared to conventional extraction (CE). The research involved advanced modeling using response surface methodology and optimization of operational parameters. The optimal conditions for maximum yield of pectin for SWE and CE methods were determined by the central composite design. The optimum conditions of CE were the temperature of 90 °C, time of 240 min, pH of 1, and pectin recovery yield of 20.8%. The optimal SWE conditions were liquid-to-solid (L/S) ratio of 30% (v/w) at temperature of 130 °C for 20 min, which resulted in a comparable yield of 20.7%. The effect of obtained pectins on viscoamylograph pasting and DSC thermal parameters of corn starch was evaluated. The contents of galacturonic acid, degree of methylation, acetylation, and ferulic acid content were higher in the pectin extracted by SWE, while the molecular weight was lower. Similar chemical groups were characterized by FTIR in both SWE and CE pectins. Color attributes of both pectins were similar. Solutions of pectins at lower concentrations displayed nearly Newtonian behavior. The addition of both pectins to corn starch decreased pasting and DSC gelatinization parameters, but increased ΔH. The results offered a promising scalable approach to convert the beet waste to pectin as a value-added product using SWE with improved pectin properties.


2018 ◽  
Vol 115 ◽  
pp. 32-39 ◽  
Author(s):  
Nikola Maravić ◽  
Zita Šereš ◽  
Senka Vidović ◽  
Aleksandra Mišan ◽  
Ivan Milovanović ◽  
...  

Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


Biofuels ◽  
2021 ◽  
pp. 1-8
Author(s):  
Saida Ibragić ◽  
Narcisa Smječanin ◽  
Ranko Milušić ◽  
Mirza Nuhanović

2021 ◽  
Vol 13 (9) ◽  
pp. 5317
Author(s):  
Sonja Simić ◽  
Jovana Petrović ◽  
Dušan Rakić ◽  
Biljana Pajin ◽  
Ivana Lončarević ◽  
...  

Sugar beet pulp (SBP) is a by-product of the sugar industry in which the dietary fiber content ranges from 73% to 80%. Compared to cereal fibers mainly used in biscuit production, sugar beet fibers are gluten free and have a perfect ratio of 2/3 insoluble fiber. In this work, sugar beet pulp was extruded with corn grits (ratios of corn grits to sugar beet pulp in extrudates were 85:15, 70:30, and 55:45), and the obtained sugar beet pulp extrudates (SBPEs) were used for improving the nutritional quality of cookies. The wheat flour in cookies was replaced with SBPEs in the amount of 5, 10, and 15%. The influence of three factors (the percentage of sugar beet pulp in the SBPEs, the size of the SBPE particles, and the percentage of wheat flour substituted with SBPEs) and their interactions on the nutritional quality of cookies, as well as their physical and sensory characteristics are examined using the Box–Behnken experimental design. The addition of extruded sugar beet pulp (SBPEs) significantly increased the amount of total dietary fiber and mineral matter of cookies. On the whole, the addition of SBPEs increased cookie hardness, but the hardness decreased with an increase in extrudate particle size. Sensory characteristics (except for the taste) were the most influenced by extrudate particle size.


Sign in / Sign up

Export Citation Format

Share Document