Understanding the bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics of Allmania nodiflora (L.) R.Br. ex Wight polyphenols during in vitro simulated digestion

2022 ◽  
Vol 372 ◽  
pp. 131294
Author(s):  
Gayathri Jagadeesan ◽  
Kasipandi Muniyandi ◽  
Ashwini Lydia Manoharan ◽  
Gayathri Nataraj ◽  
Parimelazhagan Thangaraj
2021 ◽  
Author(s):  
Ting He ◽  
lei zhao ◽  
Yan Chen ◽  
Xin Zhang ◽  
Zhuoyan Hu ◽  
...  

The effects of longan seed polyphenols (LSPs) on postprandial glycemic response in mice were investigated, enzyme inhibition kinetics of LSPs against α-amylase were studied using an inhibition assay in vitro,...


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3533
Author(s):  
Danish Iqbal ◽  
M. Salman Khan ◽  
Mohd Waiz ◽  
Md Tabish Rehman ◽  
Mohammed Alaidarous ◽  
...  

Acetylcholinesterase (AChE) inhibition is a key element in enhancing cholinergic transmission and subsequently relieving major symptoms of several neurological and neuromuscular disorders. Here, the inhibitory potential of geraniol and its mechanism of inhibition against AChE were elucidated in vitro and validated via an in silico study. Our in vitro enzyme inhibition kinetics results show that at increasing concentrations of geraniol and substrate, Vmax did not change significantly, but Km increased, which indicates that geraniol is a competitive inhibitor against AChE with an IC50 value 98.06 ± 3.92 µM. All the parameters of the ADME study revealed that geraniol is an acceptable drug candidate. A docking study showed that the binding energy of geraniol (−5.6 kcal mol−1) was lower than that of acetylcholine (−4.1 kcal mol−1) with AChE, which exhibited around a 12.58-fold higher binding affinity of geraniol. Furthermore, molecular dynamics simulation revealed that the RMSD of AChE alone or in complex with geraniol fluctuated within acceptable limits throughout the simulation. The mean RMSF value of the complex ensures that the overall conformation of the protein remains conserved. The average values of Rg, MolSA, SASA, and PSA of the complex were 3.16 Å, 204.78, 9.13, and 51.58 Å2, respectively. We found that the total SSE of AChE in the complex was 38.84% (α-helix: 26.57% and β-sheets: 12.27%) and remained consistent throughout the simulation. These findings suggest that geraniol remained inside the binding cavity of AChE in a stable conformation. Further in vivo investigation is required to fully characterize the pharmacokinetic properties, optimization of dose administration, and efficacy of this plant-based natural compound.


2011 ◽  
Vol 54 ◽  
pp. S312 ◽  
Author(s):  
H. Dahari ◽  
N. Barretto ◽  
B.J. Sainz ◽  
J. Guedj ◽  
A.S. Perelson ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5358
Author(s):  
Narayan D. Chaurasiya ◽  
Jacob Midiwo ◽  
Pankaj Pandey ◽  
Regina N. Bwire ◽  
Robert J. Doerksen ◽  
...  

A set of structurally related O-methylated flavonoid natural products isolated from Senecio roseiflorus (1), Polygonum senegalense (2 and 3), Bhaphia macrocalyx (4), Gardenia ternifolia (5), and Psiadia punctulata (6) plant species were characterized for their interaction with human monoamine oxidases (MAO-A and -B) in vitro. Compounds 1, 2, and 5 showed selective inhibition of MAO-A, while 4 and 6 showed selective inhibition of MAO-B. Compound 3 showed ~2-fold selectivity towards inhibition of MAO-A. Binding of compounds 1–3 and 5 with MAO-A, and compounds 3 and 6 with MAO-B was reversible and not time-independent. The analysis of enzyme-inhibition kinetics suggested a reversible-competitive mechanism for inhibition of MAO-A by 1 and 3, while a partially-reversible mixed-type inhibition by 5. Similarly, enzyme inhibition-kinetics analysis with compounds 3, 4, and 6, suggested a competitive reversible inhibition of MAO-B. The molecular docking study suggested that 1 selectively interacts with the active-site of human MAO-A near N5 of FAD. The calculated binding free energies of the O-methylated flavonoids (1 and 4–6) and chalcones (2 and 3) to MAO-A matched closely with the trend in the experimental IC50′s. Analysis of the binding free-energies suggested better interaction of 4 and 6 with MAO-B than with MAO-A. The natural O-methylated flavonoid (1) with highly potent inhibition (IC50 33 nM; Ki 37.9 nM) and >292 fold selectivity against human MAO-A (vs. MAO-B) provides a new drug lead for the treatment of neurological disorders.


2014 ◽  
Vol 222 ◽  
pp. 133-134 ◽  
Author(s):  
Ang Chen ◽  
Xuan Qin ◽  
Yu Tang ◽  
Mingyao Liu ◽  
Xin Wang

MedChemComm ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 277-282 ◽  
Author(s):  
Francesca Bianchini ◽  
Chiara Calugi ◽  
Jessica Ruzzolini ◽  
Gloria Menchi ◽  
Lido Calorini ◽  
...  

Ad-proline peptidomimetic targeting MMP-2 and MMP-9 was identified from a pool of compounds following enzyme inhibition kinetics and Matrigel sponge assays, showing the capacity of blocking capillary network formationin vivo.


Sign in / Sign up

Export Citation Format

Share Document