776 MODELING INTERFERON-ALPHA MEDIATED INHIBITION KINETICS OF INTRACELLULAR AND EXTRACELLULAR HCVRNA DURING HCV INFECTION IN VITRO

2011 ◽  
Vol 54 ◽  
pp. S312 ◽  
Author(s):  
H. Dahari ◽  
N. Barretto ◽  
B.J. Sainz ◽  
J. Guedj ◽  
A.S. Perelson ◽  
...  
2021 ◽  
Author(s):  
Ting He ◽  
lei zhao ◽  
Yan Chen ◽  
Xin Zhang ◽  
Zhuoyan Hu ◽  
...  

The effects of longan seed polyphenols (LSPs) on postprandial glycemic response in mice were investigated, enzyme inhibition kinetics of LSPs against α-amylase were studied using an inhibition assay in vitro,...


2022 ◽  
Vol 372 ◽  
pp. 131294
Author(s):  
Gayathri Jagadeesan ◽  
Kasipandi Muniyandi ◽  
Ashwini Lydia Manoharan ◽  
Gayathri Nataraj ◽  
Parimelazhagan Thangaraj

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Preetee Jaiswal ◽  
Pradeep Kumar ◽  
V. K. Singh ◽  
D. K. Singh

This study was designed to investigate the effects of molluscicidal components of Myristica fragrans Houtt. (Myristicaceae) on certain enzymes in the nervous tissue of freshwater snail Lymnaea acuminata Lamarck (Lymnaeidae). In vivo and in vitro treatments of trimyristin and myristicin (active molluscicidal components of Myristica fragrans Houtt.) significantly inhibited the acetylcholinesterase (AChE), acid and alkaline phosphatase (ACP/ALP) activities in the nervous tissue of Lymnaea acuminata. The inhibition kinetics of these enzymes indicates that both the trimyristin and myristicin caused competitive noncompetitive inhibition of AChE. Trimyristin caused uncompetitive and competitive/noncompetitive inhibitions of ACP and ALP, respectively whereas the myristicin caused competitive and uncompetitive inhibition of ACP and ALP, respectively. Thus results from the present study suggest that inhibition of AChE, ACP, and ALP by trimyristin and myristicin in the snail Lymnaea acuminata may be the cause of the molluscicidal activity of Myristica fragrans.


Oncology ◽  
1985 ◽  
Vol 42 (3) ◽  
pp. 169-173 ◽  
Author(s):  
Karen A. Golemboski ◽  
Gerald Sonnenfeld

Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1981 ◽  
Vol 45 (03) ◽  
pp. 285-289 ◽  
Author(s):  
J P Allain ◽  
A Gaillandre ◽  
D Frommel

SummaryFactor VIII complex and its interaction with antibodies to factor VIII have been studied in 17 non-haemophilic patients with factor VIII inhibitor. Low VIII:C and high VIIIR.Ag levels were found in all patients. VIII:WF levels were 50% of those of VTIIRrAg, possibly related to an increase of poorly aggregated and electrophoretically fast moving VIIIR:Ag oligomers.Antibody function has been characterized by kinetics of VIII :C inactivation, saturability by normal plasma and the slope of the affinity curve. Two major patterns were observed:1) Antibodies from 6 patients behaved similarly to those from haemophiliacs by showing second order inhibition kinetics, easy saturability and steep affinity slope (> 1).2) Antibodies from other patients, usually with lower titres, inactivated VIII :C according to complex order kinetics, were not saturable, and had a less steep affinity slope (< 0.7). In native plasma, or after mixing with factor VIII concentrate, antibodies of the second group did not form immune complexes with the whole factor VIII molecular complex. However, dissociation procedures did release some antibodies from apparently low molecular weight complexes formed in vivo or in vitro. For appropriate management of non-haemophilic patients with factor VIII inhibitor, it is important to determine the functional properties of their antibodies to factor VIII.


Sign in / Sign up

Export Citation Format

Share Document