Multiplex real-time PCR assays for simultaneous detection of maize MON810 and GA21 in food samples

Food Control ◽  
2013 ◽  
Vol 30 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Maria Cristina Samson ◽  
Mariolina Gullí ◽  
Nelson Marmiroli
2013 ◽  
Vol 158 (8) ◽  
pp. 1743-1753 ◽  
Author(s):  
Ilona Stefańska ◽  
Tomasz Dzieciatkowski ◽  
Lidia B. Brydak ◽  
Magdalena Romanowska

Nematology ◽  
2011 ◽  
Vol 13 (6) ◽  
pp. 713-720 ◽  
Author(s):  
Yu Yu Min ◽  
Keita Goto ◽  
Koki Toyota ◽  
Erika Sato

AbstractMultiplex real-time PCR assays were developed to quantify multiple species of Meloidogyne incognita, Pratylenchus penetrans, Globodera rostochiensis and Heterodera glycines in soil. The probes specific for P. penetrans and H. glycines are labelled with a fluorescence molecule, FAM, and those for M. incognita and G. rostochiensis with ROX. The primers and probes are species-specific to P. penetrans, but group-specific to the other species. DNA was extracted from suspensions containing each nematode and multiplex Cycleave® PCR assays were done for pairs of P. penetrans and M. incognita, P. penetrans and G. rostochiensis, or G. rostochiensis and H. glycines. The results revealed that the target nematode, except for H. glycines, was quantified in the presence of less than 100 times that of the other nematode (competitor), but underestimated in the presence of 1000 times the competitor. Such underestimation was solved by the use of SYBR Green I real time PCR assays targeting a single species. Multiplex PCR assay for P. penetrans and M. incognita was done using environmental DNA (eDNA) extracted from a soil naturally infested with the nematodes. Results quantified both species. Multiplex assay using eDNA may enable a sensitive and simultaneous detection of P. penetrans and M. incognita or P. penetrans and G. rostochiensis in soil although caution is needed in case the existing ratio is biased to one of the species.


2019 ◽  
Vol 101 (3) ◽  
pp. 609-619 ◽  
Author(s):  
Iván Córdova ◽  
Carlos Oropeza ◽  
Nigel Harrison ◽  
Sandra Ku-Rodríguez ◽  
Carlos Puch-Hau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document