Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines

Food Policy ◽  
2011 ◽  
Vol 36 (2) ◽  
pp. 280-288 ◽  
Author(s):  
Roderick M. Rejesus ◽  
Florencia G. Palis ◽  
Divina Gracia P. Rodriguez ◽  
Ruben M. Lampayan ◽  
Bas A.M. Bouman
2020 ◽  
Vol 241 ◽  
pp. 106363 ◽  
Author(s):  
Muhammad Ishfaq ◽  
Muhammad Farooq ◽  
Usman Zulfiqar ◽  
Saddam Hussain ◽  
Nadeem Akbar ◽  
...  

2014 ◽  
Vol 51 (2) ◽  
pp. 313-326 ◽  
Author(s):  
Y. A. SHAIBU ◽  
H. R. MLOZA BANDA ◽  
C. N. MAKWIZA ◽  
J. CHIDANTI MALUNGA

SUMMARYA study was conducted to evaluate performance of two rice (Oryza sativa L.) varieties under water saving irrigation through alternate wetting and drying in sandy clay loams of Southern Malawi. The varieties, Nunkile and NERICA 4, are adapted to upland and lowland irrigated conditions, individually, and commonly grown by farmers. Four irrigation regimes were used in the study: (1) continuous flooding with surface water level kept at approximately 5 cm throughout crop duration (CFI), (2) alternate wetting and drying up to start of flowering after which continuous flooding was applied (AWD1), (3) alternate wetting and drying up to start of grain filling after which continuous flooding was applied (AWD2) and (4) alternate wetting and drying throughout the crop duration (AWD3). While seasonal crop water requirement was 690 mm, total irrigation depths were 1923.61, 1307.81, 1160.61 and 807.87 mm for the four regimes respectively. The CFI treatment used 32%, 40% and 58% more water than AWD1, AWD2, and AWD3 regimes respectively. In the same treatment order, the average yields per treatment for Nunkile were 4.92, 4.75, 4.74, and 4.47 t ha−1 with significant yield differences among CFI, AWD2 and AWD3 treatments. The average yields per treatment for NERICA 4 were 3.93, 3.75, 3.75, and 3.71 t ha−1 with significant yield differences only between CFI and all AWD treatments. Crop water productivity (CWP) was higher for Nunkile compared with NERICA 4 across all irrigation treatments, while CWP for CFI treatment was superior to all three AWD treatments grown under either variety. Thus, CWP was not increased with AWD irrigations. AWD till flowering and grain filling did not significantly differ with respect to yield and CWP. It is suggested that for similar conditions and where water is scarce, rice can be grown by AWD till grain filling as it saved more water. An important part of the research is to extend the initial results beyond the climate and soils of study.


2010 ◽  
pp. 128-136
Author(s):  
MM Husain ◽  
M Shahe Alam ◽  
MH Kabir ◽  
AK Khan ◽  
MM Islam

In the context of global energy crisis and water scarcity, rice production system is undergoing changes with the strategy to produce more rice with lesser amount of water. Water saving technology has therefore, been developed and increasingly adopted to irrigate rice in different countries. Impact of alternate wetting and drying (AWD) irrigation as a water saving technique on rice yield, water productivity and environment has been overviewed in this paper. On-farm trials were conducted during the years 2007 and 2008 to validate the adaptability of AWD method of irrigation in Boro rice-variety BRRI dhan29. The trials were conducted at different locations of Gazipur, in which three farmers’ plots of rice were irrigated following AWD method, which were then compared with another 3 farmers’ plots of rice irrigated in conventional method maintaining 3-5 inches of standing water throughout. The trials have revealed that AWD method saved about 365 mm irrigation water (about 27%) over the conventional irrigation practice. However, there was no adverse effect of AWD- irrigation on grain yields of rice. AWD method as perceived by farmers, although reduced irrigation cost, resulted in more weed infestation and was associated with more weeding cost. Following the impressive results of the validation trials, the demonstrations were conducted in the farmers’ fields of different districts during boro 2009. In general, the demonstrations were successful to impress the farmers about AWD-irrigation as a water saving and low-cost irrigation method. However assurance of timely availability of irrigation is a precondition for farmers to adopt the technique and weed management using appropriate herbicides is necessary for adoption of the technology.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Kristine Samoy-Pascual ◽  
Sudhir Yadav ◽  
Gio Evangelista ◽  
Mary Ann Burac ◽  
Marvelin Rafael ◽  
...  

Alternate Wetting and Drying (AWD) is a well-known low-cost water-saving and climate change adaptation and mitigation technique for irrigated rice. However, its adoption rate has been low despite the decade of dissemination in Asia, especially in the Philippines. Using cross-sectional farm-level survey data, this study empirically explored factors shaping AWD adoption in a gravity surface irrigation system. We used regression-based approaches to examine the factors influencing farmers’ adoption of AWD and its impact on yield. Results showed that the majority of the AWD adopters were farmers who practiced enforced rotational irrigation (RI) scheduling within their irrigators’ association (IA). With the current irrigation management system, the probability of AWD implementation increases when farmers do not interfere with the irrigation schedule (otherwise they opt to go with flooding). Interestingly, the awareness factor did not play a significant role in the farmers’ adoption due to the RI setup. However, the perception of water management as an effective weed control method was positively significant, suggesting that farmers are likely to adopt AWD if weeds are not a major issue in their field. Furthermore, the impact on grain yields did not differ with AWD. Thus, given the RI scheduling already in place within the IA, we recommend fine-tuning this setup following the recommended safe AWD at the IA scale.


2021 ◽  
Vol 4 (3) ◽  
pp. 1117-1130
Author(s):  
Ngo Thanh Son ◽  
Nguyen Thu Ha

The objective of this research was to quantify the effects of water-saving regimes and fertilizer application improvement on water productivity, N-use efficiency, and rice yield. The results showed that the tested water treatments did not have significant effects on the growth and development, yield components, and final grain yield, but water productivity was significantly increased from 1.28 kg grain m-3 (W0) water to 1.74 kg grain m-3 water (W1) and 1.94 kg grain m-3 water (W2). In addition, the percentage of total irrigation water saved from W1 and W2 were 25.24-44.52% compared to continuous flooding. Fertilizer deep placement (FDP) combined with organic compost significantly increased the grain yield of the tested hybrid rice variety. Average grain yield increased quickly from 2847 kg ha-1 with 0 kg N ha-1 to 5263 kg ha-1 with 120 kg N ha-1 under the fertilizer deep placement method. The highest total nitrogen uptake, agronomic nitrogen efficiency (ANE), and nitrogen uptake efficiency (NUE) were obtained from alternate wetting and drying at a -20cm water depth and the fertilizer deep placement method (W1N2). In addition, it also gave the highest income in comparison with the other treatments. Therefore, alternate wetting and drying at a -20cm water depth and fertilizer deep placement method should be encouraged for implementation in other regions of Vietnam.


Sign in / Sign up

Export Citation Format

Share Document