scholarly journals Determinants in the Adoption of Alternate Wetting and Drying Technique for Rice Production in a Gravity Surface Irrigation System in the Philippines

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Kristine Samoy-Pascual ◽  
Sudhir Yadav ◽  
Gio Evangelista ◽  
Mary Ann Burac ◽  
Marvelin Rafael ◽  
...  

Alternate Wetting and Drying (AWD) is a well-known low-cost water-saving and climate change adaptation and mitigation technique for irrigated rice. However, its adoption rate has been low despite the decade of dissemination in Asia, especially in the Philippines. Using cross-sectional farm-level survey data, this study empirically explored factors shaping AWD adoption in a gravity surface irrigation system. We used regression-based approaches to examine the factors influencing farmers’ adoption of AWD and its impact on yield. Results showed that the majority of the AWD adopters were farmers who practiced enforced rotational irrigation (RI) scheduling within their irrigators’ association (IA). With the current irrigation management system, the probability of AWD implementation increases when farmers do not interfere with the irrigation schedule (otherwise they opt to go with flooding). Interestingly, the awareness factor did not play a significant role in the farmers’ adoption due to the RI setup. However, the perception of water management as an effective weed control method was positively significant, suggesting that farmers are likely to adopt AWD if weeds are not a major issue in their field. Furthermore, the impact on grain yields did not differ with AWD. Thus, given the RI scheduling already in place within the IA, we recommend fine-tuning this setup following the recommended safe AWD at the IA scale.

2021 ◽  
Vol 5 ◽  
Author(s):  
Yuji Enriquez ◽  
Sudhir Yadav ◽  
Gio Karlo Evangelista ◽  
Donald Villanueva ◽  
Mary Ann Burac ◽  
...  

Alternate wetting and drying (AWD) is a low-cost innovation that enables farmers to adapt to increasingly water scarcity conditions (such as drought), increase overall farm production efficiency, and mitigate greenhouse gas (GHG) emissions. It is seen as a pathway for transforming agri-food systems into more resilient, productive, biologically diverse, and equitable forms, ensuring our commitments to the UN Sustainable Development Goals (SDGs). This paper uses scaling up and innovation uncertainty frameworks to review the success and challenges of AWD's 20-year scaling trajectory in the Philippines and explain the key factors that have influenced its outcomes. The framework adapted for this study is also used to examine the fitness between the scaling context and requirements, organizational mission, and corresponding capabilities. Findings show the innovation platform that vertically integrated key actors and locally adapted AWD has helped foster essential breakthroughs in creating an enabling environment that took AWD to national policy adoption in the Philippines. However, the dominant focus on technology transfer, product focus, and preference for controlled environments in the scaling practice has neglected many important contextual factors, allowing mismatches in enabling policy incentives, institutions, and scale to diminish the impacts of AWD in gravity-based systems. Our findings suggest that rethinking and re-envisioning the ways in which the impact can be scaled in irrigation rice systems using AWD is critical to sustaining food security and making the agriculture sector more resilient to climate change.


Water Policy ◽  
2009 ◽  
Vol 12 (3) ◽  
pp. 444-460 ◽  
Author(s):  
Sushenjit Bandyopadhyay ◽  
Priya Shyamsundar ◽  
Mei Xie

Irrigation management transfer (IMT) is an important strategy among donors and governments that aims to strengthen farmer control over water and irrigation infrastructure. In this study, we use data from a survey of 68 irrigator associations (IAs) and 1020 farm households in the Philippines to examine the impact of IMT on irrigation association performance and on rice yields. We find that the presence of IMT is associated with an increase in maintenance activities undertaken by irrigation associations. While associations with and without IMT contracts undertake canal maintenance, the frequency of maintenance in IMT IAs is higher. IMT presence is also associated with an increase in farm yields by about 6%; rice production in IMT areas is higher even after we control for various differences amongst rice farmers in IMT and non-IMT areas. Finally, IMT may even give poorer farmers a small boost in terms of rice yields. We speculate that this boost may be a result of improved water delivery and better resolution of conflicts related to illegal use.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1666
Author(s):  
Amir Haghverdi ◽  
Maggie Reiter ◽  
Anish Sapkota ◽  
Amninder Singh

Research-based information regarding the accuracy and reliability of smart irrigation controllers for autonomous landscape irrigation water conservation is limited in central California. A two-year irrigation research trial (2018–2019) was conducted in Parlier, California, to study the response of hybrid bermudagrass and tall fescue to varying irrigation scenarios (irrigation levels and irrigation frequency) autonomously applied using a Weathermatic ET-based smart controller. The response of turfgrass species to the irrigation treatments was visually assessed and rated. In addition, turfgrass water response functions (TWRFs) were developed to estimate the impact of irrigation scenarios on the turfgrass species based on long-term mean reference evapotranspiration (ETo) data. The Weathermatic controller overestimated ETo between 5and 7% in 2018 and between 5 and 8% in 2019 compared with California Irrigation Management Information System values. The controller closely followed programmed watering-days restrictions across treatments in 2018 and 2019 and adjusted the watering-days based on ETo demand when no restriction was applied. The low half distribution uniformity and precipitation rate of the irrigation system were 0.78 and 28 mm h−1, respectively. The catch-cans method substantially underestimated the precipitation rate of the irrigation system and caused over-irrigation by the smart controller. No water-saving and turfgrass quality improvement was observed owing to restricting irrigation frequency (watering days). For the hybrid bermudagrass, the visual rating (VR) for 101% ETo treatment stayed above the minimum acceptable value of six during the trial. For tall fescue, the 108% ETo level with 3 d wk−1 frequency kept the VR values in the acceptable range in 2018 except for a short period in mid-trial. The TWRF provided a good fit to experimental data with r values of 0.79 and 0.75 for tall fescue and hybrid bermudagrass, respectively. The estimated VR values by TWRF suggested 70–80% ETo as the minimum irrigation application to maintain the acceptable hybrid bermudagrass quality in central California during the high water demand months (i.e., May to August) based on long-term mean ETo data. The TWRF estimations suggest that 100% ETo would be sufficient to maintain the tall fescue quality for only 55 days. This might be an overestimation impacted by the relatively small tall fescue VR data in 2019 owing to minimal fertilizer applications and should be further investigated in the future.


2010 ◽  
Vol 5 (No. 3) ◽  
pp. 75-87 ◽  
Author(s):  
A.M. Amer ◽  
K.H. Amer

Water infiltration and storage under surface irrigation are evaluated, based on the initial soil water content and inflow rate as well as on the irrigation parameters and efficiencies. For that purpose, a field experiment was conducted using fruitful grape grown in alluvial clay soil at Shebin El-Kom in 2008 grape season. To evaluate the water storage and distribution under partially wetted furrow irrigation in comparison to the traditional border irrigation as a control method, two irrigation treatments were applied. They are known as wet (WT) and dry (DT) treatments, at which water was applied when the available soil water (ASW) reached 65% and 50%, respectively. The coefficient of variation (CV) was 6.2 and 10.2% for WT and DT respectively under the furrow irrigation system as compared to 8.5% in border. Water was deeply percolated as 11.9 and 18.9% for wet and dry furrow treatments respectively, as compared with 11.1% for control with no deficit. The application efficiency achieved was 86.2% for wet furrow irrigation achieving a high grape yield (30.7 t/ha). The relation between the infiltration (cumulative depth, Z and rate, I) and opportunity time (t<sub>0</sub>) in minutes for WT and DT treatments was: Z<sub>WT</sub> = 0.528 t<sub>0</sub><sup>0.6</sup>, Z<sub>DT</sub> = 1.2 t<sub>0</sub><sup>0.501</sup>, I<sub>WT</sub> = 19 t<sub>0</sub><sup>&ndash;0.4</sup>, I<sub>DT</sub> = 36 t<sub>0</sub><sup>&ndash;0.498</sup>. Also, empirical power form equations were obtained for the measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion, and recession.


2021 ◽  
Vol 258 ◽  
pp. 107164
Author(s):  
Maite Martínez-Eixarch ◽  
Carles Alcaraz ◽  
Mercè Guàrdia ◽  
Mar Català-Forner ◽  
Andrea Bertomeu ◽  
...  

Food Policy ◽  
2011 ◽  
Vol 36 (2) ◽  
pp. 280-288 ◽  
Author(s):  
Roderick M. Rejesus ◽  
Florencia G. Palis ◽  
Divina Gracia P. Rodriguez ◽  
Ruben M. Lampayan ◽  
Bas A.M. Bouman

Sign in / Sign up

Export Citation Format

Share Document