The effect of land use type on net nitrogen mineralization on abandoned agricultural land: Silver birch stand versus grassland

2008 ◽  
Vol 255 (1) ◽  
pp. 226-233 ◽  
Author(s):  
Veiko Uri ◽  
Krista Lõhmus ◽  
Merit Kund ◽  
Hardi Tullus
Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 581
Author(s):  
Markandu Anputhas ◽  
Johannus Janmaat ◽  
Craig Nichol ◽  
Adam Wei

Research Highlights: Forest conservation policies can drive land-use change to other land-use types. In multifunctional landscapes, forest conservation policies will therefore impact on other functions delivered by the landscape. Finding the best pattern of land use requires considering these interactions. Background and Objectives: Population growth continues to drive the development of land for urban purposes. Consequently, there is a loss of other land uses, such as agriculture and forested lands. Efforts to conserve one type of land use will drive more change onto other land uses. Absent effective collaboration among affected communities and relevant institutional agents, unexpected and undesirable land-use change may occur. Materials and Methods: A CLUE-S (Conversion of Land Use and its Effects at Small Scales) model was developed for the Deep Creek watershed, a small sub-basin in the Okanagan Valley of British Columbia, Canada. The valley is experiencing among the most rapid population growth of any region in Canada. Land uses were aggregated into one forested land-use type, one urban land-use type, and three agricultural types. Land-use change was simulated for combinations of two forest conservation policies. Changes are categorized by location, land type, and an existing agricultural land policy. Results: Forest conservation policies drive land conversion onto agricultural land and may increase the loss of low elevation forested land. Model results show where the greatest pressure for removing land from agriculture is likely to occur for each scenario. As an important corridor for species movement, the loss of low elevation forest land may have serious impacts on habitat connectivity. Conclusions: Forest conservation policies that do not account for feedbacks can have unintended consequences, such as increasing conversion pressures on other valued land uses. To avoid surprises, land-use planners and policy makers need to consider these interactions. Models such as CLUE-S can help identify these spatial impacts.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10719
Author(s):  
Gregory Duncan Duckworth ◽  
Res Altwegg

Protected areas are one of the primary conservation tools used worldwide. However, they are often embedded in a landscape that is intensely used by people, such as for agriculture or urban development. The proximity of these land-use types to protected areas can potentially affect the ecological effectiveness (or conservation effectiveness) of protected areas. In this article, we examine to what degree adjacent agricultural and urban land uses affect the ecological effectiveness of protected areas over the greater Gauteng region of South Africa. We selected 198 common, resident bird species, and analysed detection/non-detection data for these species collected over regular grid cells (approximately 61 km2 in area). For each species, we estimated abundance per grid cell with the Royle-Nichols model in relation to the proportion of protected area as a covariate. Our study focused on how this relationship between proportion of protected area and abundance (which we term the ‘protection–abundance relationship’) changed as a function of other land-use types in the grid cell. Specifically, we examined the interaction effects between protected area and both urban and agricultural land-use type per grid cell on bird abundance. We assigned each species to one of seven guilds, namely: frugivores, gleaners, granivores, ground-feeders, hawkers, predators and vegivores, and examined how the protection–abundance relationship varied across guilds in relation to agriculture and urban area. As urban area within a grid cell increased, the protection–abundance relationship became more positive for 58% of all species. At the level of guilds, the protection–abundance relationship became more positive for two guilds (granivores and ground-feeders), more negative for frugivores, and remained unchanged for the other four guilds (gleaners, hawkers, predators and vegivores). As agricultural area within a grid cell increased, the protection–abundance relationship became more positive for 49% of all species. At the guild level, the protection–abundance relationship became more positive for six guilds (frugivores, gleaners, ground-feeders, hawkers, predators and vegivores) and remained unchanged for the granivores. Our results show land-use type near protected areas modified the effect protected areas had on bird abundances, and hence the ecological effectiveness of protected areas. Our results suggest that protected areas should be viewed as constituents within the landscape, rather than islands of protection.


2019 ◽  
Vol 10 (2) ◽  
pp. 32-37
Author(s):  
Farida Begum ◽  
Muneer Alam ◽  
Sameena Mumtaz ◽  
Manzoor Ali ◽  
Seema Wafee ◽  
...  

Soil quality is a fundamental component of environmental quality and impact of land use is also a keydetrimental factor in today’s rapid urbanization era. The study aims to evaluate the effects of different land-use type on selected soil quality indicators. Sixty soil samples were collected from various land use types, i.e, pasture, forest and agriculture from a depth of 0-15cm. Analysis of variance (ANOVA) showed that the land use type significantly affected the soil’s physical and chemical properties. The moisture content was significantly higher (p<0.001) in the pasture (41.7%) than the forest (26.2%) and lowest in agricultural land (14.4%). The soil pH was significantly higher or slightly alkaline for agriculture (7.8), while for pasture (6.5) and forest (6.1), it was found to be slightly acidic. Electric conductivity (EC) and bulk density (BD) did not vary significantly with land use type, but the EC followed the decreasing order: forest (203.7μS/cm) < pasture (235μS/cm) < agriculture (328.7μS/cm). The soil organic matter (SOM) and soil organic carbon (SOC) significantly (p<0.05) differed with land use type and found in the order: forest (3.0%, 1.3 %) > pasture land (2.9%, 1.2%) > arable land (2.5%, 1.1%). NO3-N, available P and exchangeable K did not vary significantly across land use types. However, mean values were higher for agriculture (10.2mg/kg, 4.5mg/kg, 66mg/kg) than forest (10mg/kg,3.5mg/kg, 60mg/kg) and pasture (9.8mg/kg, 4.3, 60.2mg/kg). Alpine soils are good ecological indicators because of vulnerability to environmental change, therefore, regular monitoring of soil properties along with carbon stocks is essential to maintain soil health, enhance agricultural productivity and sustain agroecosystems.


2016 ◽  
Vol 19 (2) ◽  
pp. 105-112
Author(s):  
Ngan Truong Nguyen ◽  
Tam Thi Giac Pham ◽  
Tu Cong Tran ◽  
Thanh Cong Tran

Ecosystem services (ES) are the benefits people obtain from ecosystems. Agricultural lands are artificial ecosystems. Therefore, the value of an agricultural land use type can be measured by the total value of ESs which human are getting on that type. This paper proposed to value agricultural lands by the ES approach and apply for the smallholder rubber ecosystem on the Suoi Rat watershed in Binh Phuoc province. The results are: selection and pricing the nine ESs in 40 sample plots; determining the total value in each plot, thereby, calculating the unit value of smallholder rubber land in the watershed is 96,570 VND/m2; comparing the result with the value get from the income method and land price in 2014 of Binh Phuoc province. This valuation methods can be applied to value for other agricultural lands


2020 ◽  
pp. 34-49
Author(s):  
Alex Amerh Agbeshie ◽  
Simon Abugre ◽  
Rita Adjei ◽  
Thomas Atta-Darkwa ◽  
Joseph Anokye

Land use conversion significantly impact on sensitive soil quality parameters such as microbial biomass and soil microbial quotient. Therefore, soil microbial biomass and physicochemical properties were compared under three different land use systems namely agricultural land, degraded mine land and an adjacent natural forest in the Newmont Gold Ghana Limited concessional areas, Kenyasi, Ghana. In our field experimentation, an area of 300 m2 was demarcated in each land use type for soil sampling. In each of the land use type, we collected soil 5 samples at a depth of 0-15 cm in both the dry and wet seasons respectively. Parameters we measured included soil bulk density, pH, particle size distribution, organic carbon, total nitrogen, available phosphorus, microbial biomass carbon and nitrogen, and moisture content. Our results revealed that land use type significantly impacted on soil microbial biomass and physicochemical properties. Microbial biomass carbon and nitrogen was higher in the forested land compared to the agricultural land and degraded mine land, which was due to relatively higher amounts of litter inputs. Microbial biomass carbon decreased between 20.23 - 88.36% when land use changed from forested land to other land uses. Significant positive correlation was observed between soil microbial biomass and water content, soil organic carbon, phosphorus, clay, nitrogen. Generally, seasonal variation in our study area did not influence soil physical and chemical properties, however, it significantly affected microbial biomass indices. Findings of our study further revealed the importance of forested area in the maintenance of soil quality parameters.


2019 ◽  
Author(s):  
Melkamu Abere Erku ◽  
Asmamaw Alemu ◽  
Abeje Eshete

Abstract Background Adansonia digitata is one of the most important Non-timber forest products and a key species that have ecological and socio-economic significance in the lowland area of Ethiopia. However, the population of the species is decreasing from time to time due to different natural and anthropogenic factors. The study important to generate information on the current existing population status of Adansonia digitata across three land use types and will provide a scientific recommendation on further management of a species.Methodology About six plots in each forest and agricultural land use type and five plots in homestead were selected randomly from the topography map. Populations of a species were determined using analysis of variance.Results The result showed that homestead and agricultural land use type had higher Adansonia digitata density than forest land use type but statically it was not significantly different. More Adansonia digitata populations were distributed in the middle diameter and height size classes. Conclusion: The study concludes that Adansonia digitata highly associated with Combretum-Terminalia, Ziziphus and Acacia tree species in the study area. This species is dominant and key ecological importance in the woodland vegetation however; Adansonia digitata has a very low importance value index in the study area, so it needs further management and conservation.


Sign in / Sign up

Export Citation Format

Share Document