Effects of bedrock type and soil chemistry on the fine roots of European beech – A study on the belowground plasticity of trees

2019 ◽  
Vol 444 ◽  
pp. 256-268 ◽  
Author(s):  
Kristina Kirfel ◽  
Stefanie Heinze ◽  
Dietrich Hertel ◽  
Christoph Leuschner
2009 ◽  
Vol 55 (No. 12) ◽  
pp. 556-566 ◽  
Author(s):  
B. Konôpka

Interspecific comparisons of the fine root “behaviour” under stressful situations may answer questions related to resistance to changing environmental conditions in the particular tree species. Our study was focused on Norway spruce (<I>Picea abies</I> [L.] Karst.) and European beech (<I>Fagus sylvatica</I> L.) grown in an acidic soil where acidity was caused by past air pollution in the Kysucké Beskydy Mts., North-Western Slovakia. Between April and October 2006, the following fine root traits were studied: biomass and necromass seasonal dynamics, vertical distribution, production, mortality, fine root turnover and production to mortality ratio. Sequential soil coring was repeatedly implemented in April, June, July, September, and October including the soil layers of 0–5, 5–15, 15–25, and 25–35 cm. Results indicated that spruce had a lower standing stock of fine roots than beech, and fine roots of spruce were more superficially distributed than those of beech. Furthermore, we estimated higher seasonal dynamics and also higher turnover of fine roots in spruce than in beech. The production to mortality ratio was higher in beech than in spruce, which was hypothetically explained as the effect of drought episodes that occurred in July and August. The results suggested that the beech root system could resist a physiological stress better than that of spruce. This conclusion was supported by different vertical distributions of fine roots in spruce and beech stands.


2012 ◽  
Vol 58 (No. 4) ◽  
pp. 152-164
Author(s):  
S. Hristovski ◽  
L. Melovski ◽  
M. Šušlevska ◽  
L. Grupče

The aim of this paper is to present the results of the investigation on belowground biomass and its annual increment in a beech ecosystem (Calamintho grandiflorae-Fagetum) in Mavrovo National Park, Republic of Macedonia. Belowground biomass was estimated in three layers of the ecosystem (tree, shrub and herb layers) for seven years during the period 1997–2005. Allometric regressions were established for the relationship of root biomass from volume index (D<sup>2</sup>H, diameter squared × height) on a sample of 10 model trees and 13 model shrubs of European beech (Fagus sylvatica L.). Fine root biomass of trees and shrubs was estimated in soil samples to a depth of 145 cm and divided into live and dead fine roots and subdivided into thickness classes. Belowground biomass of the herb layer was assessed in 20 herb species. It was estimated that the total belowground biomass in the ecosystem was 57.75 ·ha<sup>–1</sup>. The contribution of shrub and herb layers was insignificant (less than 0.2%). Biomass of the live fine roots was 10.16 t·ha<sup>–1</sup>, i.e. 18% of the total belowground biomass. Annual increment of trees and shrubs was 1.03 t·ha<sup>–1</sup>·y<sup>–1</sup> and 4.6 kg·ha<sup>–1</sup>·y<sup>–1</sup>, respectively.    


2016 ◽  
Vol 39 (9) ◽  
pp. 2004-2013 ◽  
Author(s):  
Alex M. Paya ◽  
Thorsten E. E. Grams ◽  
Taryn L. Bauerle

1995 ◽  
Vol 73 (8) ◽  
pp. 1168-1175 ◽  
Author(s):  
Rock Ouimet ◽  
Claude Camiré ◽  
Valentin Furlan

The Beauce region of Quebec has been relentlessly affected by sugar maple (Acer saccharum Marsh.) tree decline since the late 1970s. Nutrient disturbances are generally associated with maple decline, but the severity of decline symptoms can vary quite dramatically between individuals within a stand. Possible causes of this variability were investigated, including soil chemistry and endomycorrhization. Within 18 mature sugar maple stands, a comparative study of fine root colonization rate by endomycorrhizal fungi, and foliar, fine-roots, and soil-nutrient status between healthy and declining sugar maple trees was carried out. Three individuals showing a very low degree of decline symptoms (healthy) and three individuals in the vicinity exhibiting severe decline symptoms (declining) were selected in each stand. Although trees of both health classes were K and Ca deficient, the diagnosis revealed that those in the declining group were experiencing a more severe nutrient stress and lower stem radial growth than those in the healthy group. The percent colonization by endomycorrhizal fungi in fine roots of sugar maple varied from 8 to 40% among stands, with an average of 23%. However, the endomycorrhization rate was not related to tree health status. The frequency of endomycorrhization was positively correlated to soil pH and soil exchangeable Mg saturation, but negatively to the proportion of H + Al held on the soil exchange complex. Also, the rate of endomycorrhization was correlated positively to foliar and root Ca content, but negatively to foliar and root N content. Foliar N, P, K, Ca, Mg, and Mn contents were positively correlated to corresponding nutrient content in fine roots. Fine-root chemistry was only partly related to soil chemistry. Declining trees had a lower foliar K content and a lower P and Ca content in fine roots than healthy ones. The results do not support the hypothesis that sugar maple decline and its disturbed nutrient status is associated with lower colonization by endomycorrhizal fungi in fine roots. They suggest, however, that soil chemical properties, particularly the soil composition in cations, regulates fine-root colonization by endomycorrhizal fungi and sugar maple nutrition and health. These results can neither confirm nor invalidate the hypothesis according to which a deleterious microbial population may have colonized the soil under declining trees. Key words: Acer saccharum, soil cation saturation, forest decline, nutrient status, fine root, endomycorrhizae.


2021 ◽  
Vol 4 ◽  
Author(s):  
Kaie Kriiska ◽  
Krista Lõhmus ◽  
Jane Frey ◽  
Endla Asi ◽  
Naima Kabral ◽  
...  

Litter decomposition is a key process that drives carbon and nutrient cycles in forest soils. The decomposition of five different substrate types was analyzed in hemiboreal coniferous forests, focusing on the mass loss and nutrient (N, P, and K) release of fine roots (FR) and needle litter in relation to the initial substrate and soil chemistry. A litterbag incubation experiment with site-specific FR and needle litter and three standard substrates (green and rooibos tea, α-cellulose) was carried out in four Norway spruce and four Scots pine-dominated stands in Estonia. Substrate type was the primary driver of mass loss and the decay rate of different substrates did not depend on the dominant tree species of the studied stands. Alpha-cellulose lost 98 ± 1% of the mass in 2-years, while the FR mass loss was on average 23 ± 2% after 3-years of decomposition. The FR decomposition rate could be predicted using a corresponding model of green tea, although the rate of FR decomposition is approximately five times lower than the rate of green tea in the first 3-years. The annual decomposition rate of the needle litter is rather constant in hemiboreal coniferous forests in the first 3 years. The initial substrate of fine roots or needle litter and soil chemistry jointly had a significant effect on mass loss in the later stage of decomposition. The critical N concentration for N release was lower for pine FR and needle litter (0.9–1.3% and 0.7–1.1%) compared to spruce (1.2–1.6% and 1.5–1.9%, respectively). The release rate of K depended on the initial K of substrate, while the release of N and P was significantly related to the initial C:N and N:P ratios, respectively. The results show the central role of soil and substrate initial chemistry in the decomposition of fine roots and needle litter across hemiboreal forests, especially at later stage (after 2 years) of decomposition. The slower decomposition and higher retention of N in the fine roots relative to needle litter suggests that fine roots have a substantial role in the carbon and nitrogen accumulation in boreal and hemiboreal forest ecosystems.


2013 ◽  
Vol 59 (No. 11) ◽  
pp. 436-446 ◽  
Author(s):  
B. Konôpka ◽  
J. Pajtík

The quantification of stems (under- and overbark), foliage and fine roots in 14-year-old stands of European beech and Norway spruce grown on the same site were evaluated. Therefore, 60 trees of each species were sampled, dry masses of stems and foliage were established and expressed by allometric equations with stem diameter as an independent variable. The spruce allocated a much larger portion of biomass into the foliage than beech. The equations on a tree level were constructed also for specific leaf area and one-sided projected leaf area. Moreover, the quantity and morphological characteristics of fine roots in both stands were surveyed through soil coring. While standing stocks of fine roots were similar in the stands of both tree species, significant interspecies differences occurred in morphological properties of roots. Growth efficiency, expressing annual stem production on a variety of foliage and fine root parameters was calculated. The largest differences, specifically fivefold in favour of spruce, were found in growth efficiency based on a number of root tips.


2008 ◽  
Vol 28 (5) ◽  
pp. 713-719 ◽  
Author(s):  
K. Haberer ◽  
K. Herbinger ◽  
M. Alexou ◽  
H. Rennenberg ◽  
M. Tausz

Sign in / Sign up

Export Citation Format

Share Document