Spatial distribution of fine roots, rhizosphere and bulk‐soil chemistry in an acidified Picea abies stand

1993 ◽  
Vol 8 (1-4) ◽  
pp. 147-155 ◽  
Author(s):  
Hooshang Majdi ◽  
Hans Persson
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


2019 ◽  
Vol 444 ◽  
pp. 256-268 ◽  
Author(s):  
Kristina Kirfel ◽  
Stefanie Heinze ◽  
Dietrich Hertel ◽  
Christoph Leuschner

2009 ◽  
Vol 55 (No. 12) ◽  
pp. 556-566 ◽  
Author(s):  
B. Konôpka

Interspecific comparisons of the fine root “behaviour” under stressful situations may answer questions related to resistance to changing environmental conditions in the particular tree species. Our study was focused on Norway spruce (<I>Picea abies</I> [L.] Karst.) and European beech (<I>Fagus sylvatica</I> L.) grown in an acidic soil where acidity was caused by past air pollution in the Kysucké Beskydy Mts., North-Western Slovakia. Between April and October 2006, the following fine root traits were studied: biomass and necromass seasonal dynamics, vertical distribution, production, mortality, fine root turnover and production to mortality ratio. Sequential soil coring was repeatedly implemented in April, June, July, September, and October including the soil layers of 0–5, 5–15, 15–25, and 25–35 cm. Results indicated that spruce had a lower standing stock of fine roots than beech, and fine roots of spruce were more superficially distributed than those of beech. Furthermore, we estimated higher seasonal dynamics and also higher turnover of fine roots in spruce than in beech. The production to mortality ratio was higher in beech than in spruce, which was hypothetically explained as the effect of drought episodes that occurred in July and August. The results suggested that the beech root system could resist a physiological stress better than that of spruce. This conclusion was supported by different vertical distributions of fine roots in spruce and beech stands.


2020 ◽  
Vol 36 (5) ◽  
pp. 807-814
Author(s):  
Xiaolin Song ◽  
Xiaodong Gao ◽  
Paul Reese Weckler ◽  
Wei Zhang ◽  
Jie Yao ◽  
...  

HighlightsAn in-situ rainwater collection and infiltration (RWCI) method is a rainwater catchment utilization techniqueRWCI is advantageous for increasing sustainable plant-avaibale water to increase drought resistanceRWCI significantly increased the amount of water and nutrients in the rhizosphere for uptake by apple tree rootsABSTRACT. A two-year field experiment was undertaken to determine the spatial distribution of plant-available water and roots in soil profiles under two rainfall control systems—an in-situ rainwater collection and infiltration (RWCI) method and a semi-circular basin (SCB)—in apple orchards in the Loess Plateau of China. The results showed that the RWCI treatments with a soil depth of 40 cm (RWCI40), 60 cm (RWCI60), and 80 cm (RWCI80) significantly increased plant-available water in different seasons and depths and increased root growth of apple trees in the experimental soil profile (0–200 cm). At 0–200 cm soil depth, then RWCI treatments had significantly higher (91.86%-110.01%) mean plant-available water storage (PAWS) than the SCB treatment in both study years (2015 and 2016). From 0–120 cm soil depth, the RWCI60 treatment had significantly higher growing season mean PAWS than RWCI40 and RWCI80; however, RWCI80 had the highest from 120–200 cm. From 0–60 cm, the RWCI treatments had 25.84%-36.86% a smaller proportion of root system than the SCB treatment. However, from 60–120 cm, the proportion of root system increased by 131.53% (RWCI40), 157.95% (RWCI60) and 129.98% (RWCI80), relative to SCB. From 0–200 cm, the RWCI treatments had 1.49–1.94 times more root dry weight density than the SCB treatment. The highest concentration of fine roots occurred in the RWCI treatments. Thus, RWCI enabled roots to absorb more water and nutrients from a wider wetted area and improved drought resistance. Keywords: Drought resistance, Fine roots, Loess Plateau, Plant-available water, Spatial distribution.


1995 ◽  
Vol 73 (8) ◽  
pp. 1168-1175 ◽  
Author(s):  
Rock Ouimet ◽  
Claude Camiré ◽  
Valentin Furlan

The Beauce region of Quebec has been relentlessly affected by sugar maple (Acer saccharum Marsh.) tree decline since the late 1970s. Nutrient disturbances are generally associated with maple decline, but the severity of decline symptoms can vary quite dramatically between individuals within a stand. Possible causes of this variability were investigated, including soil chemistry and endomycorrhization. Within 18 mature sugar maple stands, a comparative study of fine root colonization rate by endomycorrhizal fungi, and foliar, fine-roots, and soil-nutrient status between healthy and declining sugar maple trees was carried out. Three individuals showing a very low degree of decline symptoms (healthy) and three individuals in the vicinity exhibiting severe decline symptoms (declining) were selected in each stand. Although trees of both health classes were K and Ca deficient, the diagnosis revealed that those in the declining group were experiencing a more severe nutrient stress and lower stem radial growth than those in the healthy group. The percent colonization by endomycorrhizal fungi in fine roots of sugar maple varied from 8 to 40% among stands, with an average of 23%. However, the endomycorrhization rate was not related to tree health status. The frequency of endomycorrhization was positively correlated to soil pH and soil exchangeable Mg saturation, but negatively to the proportion of H + Al held on the soil exchange complex. Also, the rate of endomycorrhization was correlated positively to foliar and root Ca content, but negatively to foliar and root N content. Foliar N, P, K, Ca, Mg, and Mn contents were positively correlated to corresponding nutrient content in fine roots. Fine-root chemistry was only partly related to soil chemistry. Declining trees had a lower foliar K content and a lower P and Ca content in fine roots than healthy ones. The results do not support the hypothesis that sugar maple decline and its disturbed nutrient status is associated with lower colonization by endomycorrhizal fungi in fine roots. They suggest, however, that soil chemical properties, particularly the soil composition in cations, regulates fine-root colonization by endomycorrhizal fungi and sugar maple nutrition and health. These results can neither confirm nor invalidate the hypothesis according to which a deleterious microbial population may have colonized the soil under declining trees. Key words: Acer saccharum, soil cation saturation, forest decline, nutrient status, fine root, endomycorrhizae.


Sign in / Sign up

Export Citation Format

Share Document