Long-term impact of nitrogen fertilization on carbon and water fluxes in a Douglas-fir stand in the Pacific Northwest

2020 ◽  
Vol 455 ◽  
pp. 117645
Author(s):  
Sung-Ching Lee ◽  
T. Andrew Black ◽  
Rachhpal S. Jassal ◽  
Andreas Christen ◽  
Gesa Meyer ◽  
...  
2019 ◽  
Vol 118 (1) ◽  
pp. 1-13 ◽  
Author(s):  
J Bradley St. Clair ◽  
Glenn T Howe ◽  
Jennifer G Kling

Abstract The 1912 Douglas-Fir Heredity Study is one of the first studies undertaken by the US Forest Service, and one of the first forest genetics studies in North America. The study considers provenance variation of 120 parent trees from 13 seed sources planted at five test sites in the Pacific Northwest. The unique, long-term nature of the study makes it valuable to revisit and consider its biological and historical significance. This analysis considers how far climatically Douglas-fir populations may be moved without incurring unacceptable declines in growth and survival. Results indicate that Douglas-fir seed sources may be moved at least 2° C cooler or warmer and still retain good long-term survival and productivity. However, projected future climate change beyond 2° C may lead to lower survival and productivity. One option to address these concerns is assisted migration; however, if seed sources are moved beyond 2–3° C to a cooler climate in anticipation of warming, or from a more continental to a maritime climate, we are likely to see increased mortality and associated losses in productivity in the near-term. Lessons from this study include: (1) pay attention to good experimental design; we were able to overcome limitations from the design by using new statistical approaches; (2) maladaptation may take time to develop; poorer survival was not evident until more than two decades after planting; and (3) long-term studies may have value for addressing new, unforeseen issues in the future.


2010 ◽  
Vol 150 (2) ◽  
pp. 208-218 ◽  
Author(s):  
Rachhpal S. Jassal ◽  
T. Andrew Black ◽  
Tiebo Cai ◽  
Gilbert Ethier ◽  
Steeve Pepin ◽  
...  

2005 ◽  
Vol 220 (1-3) ◽  
pp. 313-325 ◽  
Author(s):  
A.B. Adams ◽  
R.B. Harrison ◽  
R.S. Sletten ◽  
B.D. Strahm ◽  
E.C. Turnblom ◽  
...  

2008 ◽  
Vol 38 (9) ◽  
pp. 2455-2464 ◽  
Author(s):  
T. W. Giesen ◽  
S. S. Perakis ◽  
K. Cromack

Episodic stand-replacing wildfire is a significant disturbance in mesic and moist Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) forests of the Pacific Northwest. We studied 24 forest stands with known fire histories in the western Cascade Range in Oregon to evaluate long-term impacts of stand-replacing wildfire on carbon (C) and nitrogen (N) pools and dynamics within the forest floor (FF, Oe and Oa horizons) and the mineral soil (0–10 cm). Twelve of our stands burned approximately 150 years ago (“young”), and the other 12 burned approximately 550 years ago (“old”). Forest floor mean C and N pools were significantly greater in old stands than young stands (N pools: 1823 ± 132 kg·ha–1vs. 1450 ± 98 kg·ha–1; C pools: 62 980 ± 5403 kg·ha–1vs. 49 032 ± 2965 kg·ha–1, mean ± SE) as a result of significant differences in FF mass. Forest floor C and N concentrations and C/N ratios did not differ by time since fire, yet potential N mineralization rates were significantly higher in FF of old sites. Old and young mineral soils did not differ significantly in pools, concentrations, C/N ratios, or cycling rates. Our results suggest that C and N are sequestered in FF of Pacific Northwest Douglas-fir forests over long (∼400 year) intervals, but that shorter fire return intervals may prevent that accumulation.


2015 ◽  
Vol 398 (1-2) ◽  
pp. 281-289 ◽  
Author(s):  
Robert A. Slesak ◽  
Timothy B. Harrington ◽  
Anthony W. D’Amato

2002 ◽  
Vol 32 (6) ◽  
pp. 1057-1070 ◽  
Author(s):  
Linda E Winter ◽  
Linda B Brubaker ◽  
Jerry F Franklin ◽  
Eric A Miller ◽  
Donald Q DeWitt

The history of canopy disturbances over the lifetime of an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand in the western Cascade Range of southern Washington was reconstructed using tree-ring records of cross-dated samples from a 3.3-ha mapped plot. The reconstruction detected pulses in which many western hemlock (Tsuga heterophylla (Raf.) Sarg.) synchronously experienced abrupt and sustained increases in ringwidth, i.e., "growth-increases", and focused on medium-sized or larger ([Formula: see text]0.8 ha) events. The results show that the stand experienced at least three canopy disturbances that each thinned, but did not clear, the canopy over areas [Formula: see text]0.8 ha, occurring approximately in the late 1500s, the 1760s, and the 1930s. None of these promoted regeneration of the shade-intolerant Douglas-fir, all of which established 1500–1521. The disturbances may have promoted regeneration of western hemlock, but their strongest effect on tree dynamics was to elicit western hemlock growth-increases. Canopy disturbances are known to create patchiness, or horizontal heterogeneity, an important characteristic of old-growth forests. This reconstructed history provides one model for restoration strategies to create horizontal heterogeneity in young Douglas-fir stands, for example, by suggesting sizes of areas to thin in variable-density thinnings.


Sign in / Sign up

Export Citation Format

Share Document