scotch broom
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 2)

Oecologia ◽  
2022 ◽  
Author(s):  
Robert A. Slesak ◽  
Timothy B. Harrington ◽  
Anthony W. D’Amato ◽  
David H. Peter

Author(s):  
David Carter ◽  
Robert A. Slesak ◽  
Timothy B. Harrington ◽  
Anthony W. D’Amato

The invasive shrub Scotch broom (Cytisus scoparius (L.) Link) is a pervasive threat to regenerating Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) stands in the Pacific Northwest, USA. Field observations indicate that the susceptibility of areas to Scotch broom invasion and dominance can vary by site. We selected ten sites throughout the western Pacific Northwest that spanned a gradient of soil textures and other factors to test the site-specific susceptibility of Douglas-fir to overtopping by Scotch broom. We expected to find that the ability of Scotch broom to dominate a site was mediated by site-level factors, particularly those influencing soil water – the most limiting factor to growth in the region. We found Scotch broom and Douglas-fir were inversely affected by site-level factors. In general, Douglas-fir absolute height growth rates were more competitive with those of Scotch broom on fine-textured soils than on more coarsely textured soils. We also found Douglas-fir to have a more dramatic response to increasing down woody material than Scotch broom. Scotch broom height growth approached an asymptote at 3 m. Sites with fast-growing Douglas-fir were able to surpass this height six to seven years after planting and appear likely to avoid suppression by Scotch broom.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract C. scoparius is a perennial shrub that has been widely commercialized as an ornamental in temperate and subtropical regions of the world. It is a prolific seeder that escaped from cultivation and has become an invasive species and a serious weed in temperate areas of the United States, Canada, Hawaii, Chile and Argentina, the eastern halves of both islands of New Zealand, Australia (including Tasmania), India, Iran, Japan and South Africa (Holm et al., 1979; Parsons and Cuthbertson, 1992; Hosking et al., 1998; Peterson and Prasad, 1998; Isaacson, 2000). C. scoparius is an aggressive fast-growing invader with the capability to grow forming dense impenetrable monospecific stands that degrade native grasslands, forests, rangelands, and agricultural lands; prevent the regeneration of natural forests and prairies; and create fire hazards (Syrett et al., 1999; USDA-NRCS, 2016). Because of its association with nitrogen fixing bacteria, it is very competitive in areas with poor soils and can alter the nutrient cycling of invaded areas (Peterson and Prasad, 1998).


2021 ◽  
Author(s):  
Robert Slesak ◽  
Timothy Harrington ◽  
Anthony D'Amato ◽  
David Peter

Abstract Scotch broom is an aggressive invasive species of major concern in coast Douglas-fir forests of the Pacific Northwest USA. Control efforts are common, but potential for ecosystem recovery following Scotch broom removal is unclear. We assessed the potential for ecosystem recovery following broom removal at two sites that contrasted strongly in soil quality (i.e., texture and nutrient pool size) in western Washington and Oregon. Comparisons were made among replicated plots where Scotch broom was never present (uninvaded), retained, or removed. Microclimate (photosynthetically active radiation (PAR), soil temperature and moisture), soil properties, and vegetation were monitored during 2013 to 2017. Scotch broom removal increased PAR and soil temperature at both sites but had limited effects on soil moisture. Concentrations of Ca, Mg, K, and P were significantly lower with Scotch broom removal compared to the uninvaded and retained treatments, with the effect being most pronounced at the low-quality site. NMS ordinations indicated that the treatments differed in vegetation composition, with limited evidence for recovery in the removal treatment. Nonnative and native species varied inversely in their abundance responses, where nonnative species abundance was greatest in the removal treatment, intermediate in the retained treatment, and lowest in the uninvaded treatment, indicating occurrence of a secondary invasion following removal. As with the soil response, effects were more pronounced at the low-quality site. Our findings indicate that Scotch broom removal exacerbates negative effects on soil and plant communities, with little evidence of ecosystem recovery over our study period. These findings highlight the importance of controlling Scotch broom invasions immediately after the species establishes, especially at low-quality sites that are more susceptible to Scotch broom invasion and negative legacy effects.


Weed Science ◽  
2020 ◽  
Vol 68 (5) ◽  
pp. 517-526
Author(s):  
Timothy B. Harrington

AbstractScotch broom [Cytisus scoparius (L.) Link] is a large nonnative, leguminous shrub that threatens native plant communities by rapidly invading recently disturbed sites, competing vigorously for soil water and nutrients, and imparting soil legacy effects that inhibit native plants. In the Pacific Northwest, logging debris retention after forest harvesting prevents or slows C. scoparius invasions. A series of studies were conducted to determine potential mechanisms by which logging debris modifies the light environment to limit germination and growth of C. scoparius. In laboratory studies, seed germination did not vary significantly (P > 0.05): (1) between presence and absence of light for several temperature regimes, (2) when exposed to red (660-nm wavelength) versus far-red (730-nm wavelength) light, and (3) across a range of red/far-red light (R/FR) ratios. These results indicate that modification of the light environment by logging debris or plant canopies has little or no influence on C. scoparius germination. In a study to simulate effects of variable mass of logging debris, “heavy” debris (2 kg m−2) caused biologically relevant reductions in photosynthetic photon flux density (PPFD) and R/FR relative to conditions under “light” debris (1 kg m−2). Cytisus scoparius germination did not differ significantly between simulated heavy and light debris; however, values of seedling root and shoot biomass under heavy debris were 16% and 71% of those observed under light debris, respectively. These results indicate that heavy debris limits biomass of C. scoparius seedlings, particularly roots, by reducing both PPFD and R/FR, which increases seedling vulnerability to summer drought or other stressors. Retention of heavy logging debris after forest harvesting has potential application on sites likely to be invaded by C. scoparius, as well as those sites with seedbanks containing C. scoparius.


Plant Ecology ◽  
2020 ◽  
Vol 221 (8) ◽  
pp. 709-723
Author(s):  
Jacob Winde ◽  
Mads Sønderkær ◽  
Kåre L. Nielsen ◽  
Majken Pagter

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 203
Author(s):  
María Pardo-Muras ◽  
Carolina G. Puig ◽  
Pablo Souza-Alonso ◽  
Nuria Pedrol

In our previous studies, the phytotoxicity of Ulex europaeus (gorse) and Cytisus scoparius (Scotch broom) was demonstrated in vitro and argued to be caused by the release of volatile and water-soluble compounds from fresh plant foliage. In light of these positive results, there was a need to test the effects ex vitro. In this work, gorse and Scotch broom were used as soil amendments in pot experiments in a glasshouse by incorporating slashed plant material into the soil at a ratio of 1% w/w on a dry mass basis. The phytotoxic effects on the emergence and early growth of maize and five accompanying weed species were analyzed, as were the effect on soil fertility and soil community-level physiological profiles. Thirty days after incorporation, significant decreases in weed density of 32.2% and 59.5% were found for gorse and Scotch broom soil amendments, respectively. Gorse soil amendment was notably effective impairing the establishment of Amaranthus retroflexus and diminishing the plant height of Digitaria sanguinalis and Portulaca oleracea. Scotch broom soil amendment was capable of significantly inhibiting the emergence of D. sanguinalis, Convolvulus arvensis, P. oleracea, and A. retroflexus, with a notable reduction of weed biomass. No undesirable side effects on maize crop or soil quality, including microbial activity, were detected. Our results suggest that the incorporation of gorse and Scotch broom foliage is promising for pre-emergent weed control in maize; however, field trials that support and expand these glasshouse results are essential.


Sign in / Sign up

Export Citation Format

Share Document