scholarly journals Comparative development of the four tallest conifer species

2021 ◽  
Vol 480 ◽  
pp. 118688
Author(s):  
Stephen C. Sillett ◽  
Russell D. Kramer ◽  
Robert Van Pelt ◽  
Allyson L. Carroll ◽  
Jim Campbell-Spickler ◽  
...  
Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 15 ◽  
Author(s):  
Lynda D. Prior ◽  
David M. J. S. Bowman

Developing standardised classification of post-fire responses is essential for globally consistent comparisons of woody vegetation communities. Existing classification systems are based on responses of species growing in fire-prone environments. To accommodate species that occur in rarely burnt environments, we have suggested some important points of clarification to earlier schemes categorizing post-fire responses. We have illustrated this approach using several Australasian conifer species as examples of pyrophobic species. In particular, we suggest using the term “obligate seeder” for the general category of plants that rely on seed to reproduce, and qualifying this to “post-fire obligate seeder” for the narrower category of species with populations that recover from canopy fire only by seeding; the species are typically fire-cued, with large aerial or soil seed banks that germinate profusely following a fire, and grow and reproduce rapidly in order to renew the seed bank before the next fire.


1994 ◽  
Vol 118 (3) ◽  
pp. 233-236 ◽  
Author(s):  
Steve J. Upton ◽  
Michael Tilley ◽  
Dianne B. Brillhart

2012 ◽  
Vol 50 (1) ◽  
pp. 213-216

Elias Dinopoulos of University of Florida reviews “Unified Growth Theory” by Oded Galor. The EconLit Abstract of the reviewed work begins: Explores the forces that have generated the transition of the world economy from an epoch of stagnation to an era of sustained economic growth and triggered the emergence of the large disparity in living standards across the globe. Discusses the move from stagnation to growth; the Malthusian theory; theories of the demographic transition; unified growth theory; unified growth theory and comparative development; and human evolution and the process of development. Galor is Herbert H. Goldberger Professor of Economics at Brown University. Name and subject indexes.


2009 ◽  
Vol 18 (7) ◽  
pp. 857 ◽  
Author(s):  
Chad T. Hanson ◽  
Malcolm P. North

With growing debate over the impacts of post-fire salvage logging in conifer forests of the western USA, managers need accurate assessments of tree survival when significant proportions of the crown have been scorched. The accuracy of fire severity measurements will be affected if trees that initially appear to be fire-killed prove to be viable after longer observation. Our goal was to quantify the extent to which three common Sierra Nevada conifer species may ‘flush’ (produce new foliage in the year following a fire from scorched portions of the crown) and survive after fire, and to identify tree or burn characteristics associated with survival. We found that, among ponderosa pines (Pinus ponderosa Dougl. ex. Laws) and Jeffrey pines (Pinus jeffreyi Grev. & Balf) with 100% initial crown scorch (no green foliage following the fire), the majority of mature trees flushed, and survived. Red fir (Abies magnifica A. Murr.) with high crown scorch (mean = 90%) also flushed, and most large trees survived. Our results indicate that, if flushing is not taken into account, fire severity assessments will tend to overestimate mortality and post-fire salvage could remove many large trees that appear dead but are not.


Urban Climate ◽  
2021 ◽  
Vol 39 ◽  
pp. 100967
Author(s):  
Matthew J. Moody ◽  
Brian N. Bailey ◽  
Eric R. Pardyjak ◽  
Walt F. Mahaffee ◽  
Rob Stoll

2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.


Sign in / Sign up

Export Citation Format

Share Document