Herbaceous plants influence bacterial communities, while shrubs influence fungal communities in subalpine coniferous forests

2021 ◽  
Vol 500 ◽  
pp. 119656
Author(s):  
Keyu Chen ◽  
Lei Hu ◽  
Changting Wang ◽  
Wengao Yang ◽  
Hongbiao Zi ◽  
...  
Author(s):  
Ze Ren ◽  
Hongkai Gao

Bacterial and fungal communities in biofilms are important components in driving biogeochemical processes in stream ecosystems. Previous studies have well documented the patterns of bacterial alpha diversity in stream biofilms in glacier-fed streams, where, however, beta diversity of the microbial communities has received much less attention especially considering both bacterial and fungal communities. A focus on beta diversity can provide insights into the mechanisms driving community changes associated to large environmental fluctuations and disturbances, such as in glacier-fed streams. Moreover, modularity of co-occurrence networks can reveal more ecological and evolutionary properties of microbial communities beyond taxonomic groups. Here, integrating beta diversity and co-occurrence approach, we explored the network topology and modularity of the bacterial and fungal communities with consideration of environmental variation in glacier-fed streams in Central Asia. Combining results from hydrological modeling and normalized difference of vegetation index, this study highlighted that hydrological variables and vegetation status are major variables determining the environmental heterogeneity of glacier-fed streams. Bacterial communities formed a more complex and connected network, while the fungal communities formed a more clustered network. Moreover, the strong interrelations among the taxonomic dissimilarities of bacterial community and modules suggest they had common processes in driving diversity and taxonomic compositions across the heterogeneous environment. In contrast, fungal community and modules generally showed distinct driving processes to each other. Moreover, bacterial and fungal communities also had different driving processes. Furthermore, the variation of bacterial community and modules were strongly correlated with hydrological properties and vegetation status but not with nutrients, while fungal community and modules (except one module) were not associated with environmental variation. Our results suggest that bacterial and fungal communities had distinct mechanisms in structuring microbial networks, and environmental variation had strong influences on bacterial communities but not on fungal communities. The fungal communities have unique assembly mechanisms and physiological properties which might lead to their insensitive responses to environmental variations compared to bacterial communities. Overall, beyond alpha diversity in previous studies, these results add our knowledge that bacterial and fungal communities have contrasting assembly mechanisms and respond differently to environmental variation in glacier-fed streams.


2019 ◽  
Author(s):  
Ze Ren ◽  
Hongkai Gao

Bacterial and fungal communities in biofilms are important components in driving biogeochemical processes in stream ecosystems. Previous studies have well documented the patterns of bacterial alpha diversity in stream biofilms in glacier-fed streams, where, however, beta diversity of the microbial communities has received much less attention especially considering both bacterial and fungal communities. A focus on beta diversity can provide insights into the mechanisms driving community changes associated to large environmental fluctuations and disturbances, such as in glacier-fed streams. Moreover, modularity of co-occurrence networks can reveal more ecological and evolutionary properties of microbial communities beyond taxonomic groups. Here, integrating beta diversity and co-occurrence approach, we explored the network topology and modularity of the bacterial and fungal communities with consideration of environmental variation in glacier-fed streams in Central Asia. Combining results from hydrological modeling and normalized difference of vegetation index, this study highlighted that hydrological variables and vegetation status are major variables determining the environmental heterogeneity of glacier-fed streams. Bacterial communities formed a more complex and connected network, while the fungal communities formed a more clustered network. Moreover, the strong interrelations among the taxonomic dissimilarities of bacterial community and modules suggest they had common processes in driving diversity and taxonomic compositions across the heterogeneous environment. In contrast, fungal community and modules generally showed distinct driving processes to each other. Moreover, bacterial and fungal communities also had different driving processes. Furthermore, the variation of bacterial community and modules were strongly correlated with hydrological properties and vegetation status but not with nutrients, while fungal community and modules (except one module) were not associated with environmental variation. Our results suggest that bacterial and fungal communities had distinct mechanisms in structuring microbial networks, and environmental variation had strong influences on bacterial communities but not on fungal communities. The fungal communities have unique assembly mechanisms and physiological properties which might lead to their insensitive responses to environmental variations compared to bacterial communities. Overall, beyond alpha diversity in previous studies, these results add our knowledge that bacterial and fungal communities have contrasting assembly mechanisms and respond differently to environmental variation in glacier-fed streams.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anthony Horner ◽  
Samuel S. Browett ◽  
Rachael E. Antwis

AbstractModern agricultural practices have vastly increased crop production but negatively affected soil health. As such, there is a call to develop sustainable, ecologically-viable approaches to food production. Mixed-cropping of plant varieties can increase yields, although impacts on plant-associated microbial communities are unclear, despite their critical role in plant health and broader ecosystem function. We investigated how mixed-cropping between two field pea (Pisum sativum L.) varieties (Winfreda and Ambassador) influenced root-associated microbial communities and yield. The two varieties supported significantly different fungal and bacterial communities when grown as mono-crops. Mixed-cropping caused changes in microbial communities but with differences between varieties. Root bacterial communities of Winfreda remained stable in response to mixed-cropping, whereas those of Ambassador became more similar to Winfreda. Conversely, root fungal communities of Ambassador remained stable under mixed-cropping, and those of Winfreda shifted towards the composition of Ambassador. Microbial co-occurrence networks of both varieties were stronger and larger under mixed-cropping, which may improve stability and resilience in agricultural soils. Both varieties produced slightly higher yields under mixed-cropping, although overall Ambassador plants produced higher yields than Winfreda plants. Our results suggest that variety diversification may increase yield and promote microbial interactions.


2018 ◽  
Vol 20 (9) ◽  
pp. 3186-3200 ◽  
Author(s):  
Hang-Wei Hu ◽  
Jun-Tao Wang ◽  
Brajesh K. Singh ◽  
Yu-Rong Liu ◽  
Yong-Liang Chen ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Yanru Chen ◽  
Kaimin Li ◽  
Ting Liu ◽  
Ruyi Li ◽  
Guiming Fu ◽  
...  

Special-flavor Baijiu is a unique Baijiu in Jiangxi Province, China, whose uniqueness mainly depends on the unique production process of special-flavor Baijiu Daqu. However, the microbial structure and physicochemical indices of different parts of the special-flavor Baijiu Daqu are still unknown. This greatly reduces the actual value of Daqu in the production of special-flavor Baijiu. Therefore, culture-dependent and Illumina MiSeq sequencing methods were used to analyze the microbial structure of special-flavor Baijiu Daqu. The results indicated that there was a complicated microbial diversity in Chinese special-flavor Baijiu Daqu. The predominant bacterial communities were Bacillales, Lactobacillales, and Rhodospirillales, while Saccharomycetales and Eurotiales were the predominant fungal communities. Significant differences in microbial community and distribution were shown between the surface and central parts of Daqu. Acetobacter and Pichia genera were the predominant microorganisms in the surface part of Daqu, whereas Aspergillus, Kroppenstedtia, Oceanobacillus, and Bacillus genera were the predominant microorganisms in the central part of Daqu. Meantime, the different microbial distributions between the surface and central parts of Daqu caused the significant differences in the physicochemical indices. These results can provide an important theoretical basis for improving the brewing process and the quality of special-flavor Baijiu.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jana Voříšková ◽  
Bo Elberling ◽  
Anders Priemé

Abstract Background Climate models predict substantial changes in temperature and precipitation patterns across Arctic regions, including increased winter precipitation as snow in the near future. Soil microorganisms are considered key players in organic matter decomposition and regulation of biogeochemical cycles. However, current knowledge regarding their response to future climate changes is limited. Here, we explore the short-term effect of increased snow cover on soil fungal, bacterial and archaeal communities in two tundra sites with contrasting water regimes in Greenland. In order to assess seasonal variation of microbial communities, we collected soil samples four times during the plant-growing season. Results The analysis revealed that soil microbial communities from two tundra sites differed from each other due to contrasting soil chemical properties. Fungal communities showed higher richness at the dry site whereas richness of prokaryotes was higher at the wet tundra site. We demonstrated that fungal and bacterial communities at both sites were significantly affected by short-term increased snow cover manipulation. Our results showed that fungal community composition was more affected by deeper snow cover compared to prokaryotes. The fungal communities showed changes in both taxonomic and ecological groups in response to climate manipulation. However, the changes were not pronounced at all sampling times which points to the need of multiple sampling in ecosystems where environmental factors show seasonal variation. Further, we showed that effects of increased snow cover were manifested after snow had melted. Conclusions We demonstrated rapid response of soil fungal and bacterial communities to short-term climate manipulation simulating increased winter precipitation at two tundra sites. In particular, we provide evidence that fungal community composition was more affected by increased snow cover compared to prokaryotes indicating fast adaptability to changing environmental conditions. Since fungi are considered the main decomposers of complex organic matter in terrestrial ecosystems, the stronger response of fungal communities may have implications for organic matter turnover in tundra soils under future climate.


2019 ◽  
Vol 57 (6) ◽  
pp. 461-469
Author(s):  
Pengyu Zhao ◽  
Jinxian Liu ◽  
Tong Jia ◽  
Zhengming Luo ◽  
Cui Li ◽  
...  

2014 ◽  
Vol 281 (1779) ◽  
pp. 20132653 ◽  
Author(s):  
Quinn S. McFrederick ◽  
Ulrich G. Mueller ◽  
Rosalind R. James

Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is an important field crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphaera aggregata . To test the hypothesis that some gut microbes directly or indirectly affect the growth of others, we applied four treatments to the pollen provisions of M. rotundata eggs and young larvae: antibacterials, antifungals, A. aggregata spores and a no-treatment control. We allowed the larvae to develop, and then used 454 pyrosequencing and quantitative PCR (for A. aggregata ) to investigate fungal and bacterial communities in the larval gut. Antifungals lowered A. aggregata abundance but increased the diversity of surviving fungi. This suggests that A. aggregata inhibits the growth of other fungi in the gut through chemical or competitive interaction. Bacterial richness decreased under the antifungal treatment, suggesting that changes in the fungal community caused changes in the bacterial community. We found no evidence that bacteria affect fungal communities. Lactobacillus kunkeei clade bacteria were common members of the larval gut microbiota and exhibited antibiotic resistance. Further research is needed to determine the effect of gut microbes on M. rotundata health.


2014 ◽  
Author(s):  
Andrew Nelson ◽  
Audrey Perry ◽  
Christopher J Stewart ◽  
Clare V Lanyon ◽  
John D Perry ◽  
...  

Aims: The purpose of this study was to analyse the bacterial and fungal turnover in the lungs of cystic fibrosis patients who were ΔF508 homo- and hetero-zygotes. Further to this we wanted to identify the effects that Intravenous (IV) antibiotic perturbations had on the community and most importantly, whether exacerbations in these patients could be attributed to microbial species or communities. Methods: A total of 149 samples were collected from 18 adult CF patients attending a clinic at the RVI hospital, Newcastle upon Tyne. The samples were subject to DNA extraction followed by bacterial and fungal community DGGE analysis as well as qPCR analysis of the bacterial load. Results: We have found that bacterial and fungal communities present in the CF lung are not different when patients are suffering an exacerbation. Further to this, we have found that bacterial communities in the CF lung are disturbed by IV antibiotic administration and cause increased species turnover. We have shown that fungal taxa are capable of chronically colonising the CF lung. Conclusions: Our study adds further evidence to the assertion that changes in bacterial communities are not the cause of CF exacerbations. However, we were able to demonstrate that acquisition of new bacterial taxa was strongly associated with exacerbations in one patient. This study is the first to illustrate that fungi can persist in the CF lung but are not associated with clinical status.


Sign in / Sign up

Export Citation Format

Share Document