Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation

2005 ◽  
Vol 39 (12) ◽  
pp. 1591-1600 ◽  
Author(s):  
M MELIDOU ◽  
K RIGANAKOS ◽  
D GALARIS
1996 ◽  
Vol 134 (4) ◽  
pp. 963-970 ◽  
Author(s):  
P Jin ◽  
Y Gu ◽  
D O Morgan

The activity of the mitosis-promoting kinase CDC2-cyclin B is normally suppressed in S phase and G2 by inhibitory phosphorylation at Thr14 and Tyr15. This work explores the possibility that these phosphorylations are responsible for the G2 arrest that occurs in human cells after DNA damage. HeLa cell lines were established in which CDC2AF, a mutant that cannot be phosphorylated at Thr14 and Tyr15, was expressed from a tetracycline-repressible promoter. Expression of CDC2AF did not induce mitotic events in cells arrested at the beginning of S phase with DNA synthesis inhibitors, but induced low levels of premature chromatin condensation in cells progressing through S phase and G2. Expression of CDC2AF greatly reduced the G2 delay that resulted when cells were X-irradiated in S phase. However, a significant G2 delay was still observed and was accompanied by high CDC2-associated kinase activity. Expression of wild-type CDC2, or the related kinase CDK2AF, had no effect on the radiation-induced delay. Thus, inhibitory phosphorylation of CDC2, as well as additional undefined mechanisms, delay mitosis after DNA damage.


2000 ◽  
Vol 13 (4) ◽  
pp. 309-315 ◽  
Author(s):  
Kaoru Midorikawa ◽  
Mariko Murata ◽  
Shinji Oikawa ◽  
Saeko Tada-Oikawa ◽  
Shosuke Kawanishi
Keyword(s):  

2001 ◽  
Vol 355 (2) ◽  
pp. 473-479 ◽  
Author(s):  
Marilyne LEVADOUX-MARTIN ◽  
John E. HESKETH ◽  
John H. BEATTIE ◽  
Heather M. WALLACE

Metallothioneins (MTs) have a major role to play in metal metabolism, and may also protect DNA against oxidative damage. MT protein has been found localized in the nucleus during S-phase. The mRNA encoding the MT-1 isoform has a perinuclear localization, and is associated with the cytoskeleton; this targeting, due to signals within the 3′-untranslated region (3′-UTR), facilitates nuclear localization of MT-1 during S-phase [Levadoux, Mahon, Beattie, Wallace and Hesketh (1999) J. Biol. Chem. 274, 34961-34966]. Using cells transfected with MT gene constructs differing in their 3′-UTRs, the role of MT protein in the nucleus has been studied. Chinese hamster ovary cells were transfected with either the full MT gene (MTMT cells) or with the MT 5′-UTR and coding region linked to the 3′-UTR of glutathione peroxidase (MTGSH cells). Cell survival following exposure to oxidative stress and chemical agents was higher in cells expressing the native MT gene than in cells where MT localization was disrupted, or in untransfected cells. Also, MTMT cells showed less DNA damage than MTGSH cells in response to either hydrogen peroxide or mutagen. After exposure to UV light or mutagen, MTMT cells showed less apoptosis than MTGSH cells, as assessed by DNA fragmentation and flow cytometry. The data indicate that the perinuclear localization of MT mRNA is important for the function of MT in a protective role against DNA damage and apoptosis induced by external stress.


2006 ◽  
Vol 188 (11) ◽  
pp. 3740-3747 ◽  
Author(s):  
Barbara Setlow ◽  
Swaroopa Atluri ◽  
Ryan Kitchel ◽  
Kasia Koziol-Dube ◽  
Peter Setlow

ABSTRACT Dipicolinic acid (DPA) comprises ∼10% of the dry weight of spores of Bacillus species. Although DPA has long been implicated in spore resistance to wet heat and spore stability, definitive evidence on the role of this abundant molecule in spore properties has generally been lacking. Bacillus subtilis strain FB122 (sleB spoVF) produced very stable spores that lacked DPA, and sporulation of this strain with DPA yielded spores with nearly normal DPA levels. DPA-replete and DPA-less FB122 spores had similar levels of the DNA protective α/β-type small acid-soluble spore proteins (SASP), but the DPA-less spores lacked SASP-γ. The DPA-less FB122 spores exhibited similar UV resistance to the DPA-replete spores but had lower resistance to wet heat, dry heat, hydrogen peroxide, and desiccation. Neither wet heat nor hydrogen peroxide killed the DPA-less spores by DNA damage, but desiccation did. The inability to synthesize both DPA and most α/β-type SASP in strain PS3664 (sspA sspB sleB spoVF) resulted in spores that lost viability during sporulation, at least in part due to DNA damage. DPA-less PS3664 spores were more sensitive to wet heat than either DPA-less FB122 spores or DPA-replete PS3664 spores, and the latter also retained viability during sporulation. These and previous results indicate that, in addition to α/β-type SASP, DPA also is extremely important in spore resistance and stability and, further, that DPA has some specific role(s) in protecting spore DNA from damage. Specific roles for DPA in protecting spore DNA against damage may well have been a major driving force for the spore's accumulation of the high levels of this small molecule.


2013 ◽  
Vol 16 (2) ◽  
pp. 45-52 ◽  
Author(s):  
Sa. Eshkoor ◽  
P. Ismail ◽  
Sa. Rahman ◽  
S. Moin ◽  
My. Adon

ABSTRACT The ageing process is influenced by many internal and external factors. The toxic substances in the environment can cause genomic damages to cells, which increase the risk of early ageing. Furthermore, the cytochrome P450 1A2 (CYP1A2) gene polymorphism is a susceptibility factor and may enhance the risk of DNA damage in cells. The current study was carried out to show whether occupational exposure could cause genotoxicity in cells carrying the CYP1A2 gene polymorphism, thus enhancing the likelihood of early ageing. This study was conducted on mechanical workshop workers and a control group by collecting buccal cells from their mouths. Restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) was used to identify the CYP1A2 gene polymorphism in the cells. In addition, three extra methods including micronuclei (MN) test, comet assay and real-time PCR (RT-PCR) were applied to determine the effects of gene polymorphisms on DNA damage and ageing from occupational exposure. The results showed that DNA damage in the cells carrying the mutated genotype was higher than the wild genotype. In addition, the difference in MN frequency (p = 0.001) and relative telomere length (p = 0.002) between workers and controls was significant (p <0.05) in the mutated genotype. The findings indicated a possible protective effect of gene polymorphism against early ageing, which was characterized by lack of a significant influence of CYP1A2 gene polymorphism on genetic material in the subjects (p >0.05). It was concluded that the CYP1A2 gene could be a contributing factor to prevent early ageing from occupational exposure.


2002 ◽  
Vol 32 (2) ◽  
pp. 198-199 ◽  
Author(s):  
Dimitrios Galaris ◽  
Ben-Zhan Zhu ◽  
Balz Frei

Sign in / Sign up

Export Citation Format

Share Document