Regulation of mitochondrial uncoupling respiration during exercise in rat heart: Role of reactive oxygen species (ROS) and uncoupling protein 2

2008 ◽  
Vol 44 (7) ◽  
pp. 1373-1381 ◽  
Author(s):  
Hai Bo ◽  
Ning Jiang ◽  
Guodong Ma ◽  
Jinting Qu ◽  
Guizhong Zhang ◽  
...  
Peptides ◽  
2012 ◽  
Vol 37 (2) ◽  
pp. 314-319 ◽  
Author(s):  
Mahdieh Faghihi ◽  
Ali Mohammad Alizadeh ◽  
Vahid Khori ◽  
Mostafa Latifpour ◽  
Saeed Khodayari

2002 ◽  
Vol 80 (6) ◽  
pp. 757-764 ◽  
Author(s):  
Carine Duval ◽  
Anne Nègre-Salvayre ◽  
Alain Doglio ◽  
Robert Salvayre ◽  
Luc Pénicaud ◽  
...  

Uncoupling protein 2 (UCP-2) belongs to the mitochondrial anion carrier family. It is ubiquitously expressed but is most abdundant in the reticuloendothelial system. In addition to uncoupling function, UCP-2 modulates the production of reactive oxygen species (ROS) by isolated mitochondria. Using an antisense oligonucleotide strategy, we investigated whether a defect in UCP-2 expression modulates ROS in intact endothelial cells. Murine endothelial cells (CRL 2181) pretreated by antisense oligonucleotides directed against UCP-2 mRNA exhibited a significant and specific increase in membrane potential and intracellular ROS level compared with control scrambled or anti-UCP-1 and -UCP-3 antisense oligonucleotides. These specific changes induced by UCP-2 antisense oligonucleotides were correlated with a rise in extracellular superoxide anion production and oxidative stress assessed by thiobarbituric acid reactive substance values. Taken together, these data suggest a role for UCP-2 in control of ROS production and subsequent oxidation of surrounding compounds mediating oxidative stress of endothelial cells. These data also support the notion that manipulations of UCP-2 at the genetic level could control ROS metabolism at the cellular level.Key words: UCP-2, reactive oxygen species, LDL oxidation, oxidative stress, mitochondria, endothelial cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hwang I. S. Thomas ◽  
Ying-Shiuan Chen ◽  
Ching-Han Hung ◽  
Dilip Bhargava Sreerangaraja Urs ◽  
Tien-Ling Liao ◽  
...  

Sperm motility is one of the major determinants of male fertility. Since sperm need a great deal of energy to support their fast movement by active metabolism, they are thus extremely vulnerable to oxidative damage by the reactive oxygen species (ROS) and other free radicals generated as byproducts in the electron transport chain. The present study is aimed at understanding the impact of a mitochondrial oxidizing/reducing microenvironment in the etiopathology of male infertility. We detected the mitochondrial DNA (mtDNA) 4,977 bp deletion in human sperm. We examined the gene mutation of ATP synthase 6 (ATPase6 m.T8993G) in ATP generation, the gene polymorphisms of uncoupling protein 2 (UCP2, G-866A) in the uncoupling of oxidative phosphorylation, the role of genes such as manganese superoxide dismutase (MnSOD, C47T) and catalase (CAT, C-262T) in the scavenging system in neutralizing reactive oxygen species, and the role of human 8-oxoguanine DNA glycosylase (hOGG1, C1245G) in 8-hydroxy-2 ′ -deoxyguanosine (8-OHdG) repair. We found that the sperm with higher motility were found to have a higher mitochondrial membrane potential and mitochondrial bioenergetics. The genotype frequencies of UCP2 G-866A, MnSOD C47T, and CAT C-262T were found to be significantly different among the fertile subjects, the infertile subjects with more than 50% motility, and the infertile subjects with less than 50% motility. A higher prevalence of the mtDNA 4,977 bp deletion was found in the subjects with impaired sperm motility and fertility. Furthermore, we found that there were significant differences between the occurrences of the mtDNA 4,977 bp deletion and MnSOD (C47T) and hOGG1 (C1245G). In conclusion, the maintenance of the mitochondrial redox microenvironment and genome integrity is an important issue in sperm motility and fertility.


10.1038/82565 ◽  
2000 ◽  
Vol 26 (4) ◽  
pp. 435-439 ◽  
Author(s):  
Denis Arsenijevic ◽  
Hiroki Onuma ◽  
Claire Pecqueur ◽  
Serge Raimbault ◽  
Brian S. Manning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document