Nitro-Fatty Acids Formed by Extra Virgin Olive Oil (EVOO) Consumption Modulate Mitochondrial Function in High Fat-Fed Mice

2014 ◽  
Vol 76 ◽  
pp. S102
Author(s):  
Beatriz Sanchez-Calvo ◽  
Adriana Cassina ◽  
Eric Kelley ◽  
Juan B. Barroso ◽  
Homero Rubbo ◽  
...  
2016 ◽  
Vol 7 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Rodrigo Valenzuela ◽  
Alejandra Espinosa ◽  
Paola Llanos ◽  
Maria Catalina Hernandez-Rodas ◽  
Cynthia Barrera ◽  
...  

We evaluated the anti-steatotic effects of n-3 long-chain polyunsaturated fatty acids plus extra virgin olive oil in the liver of mice fed a high fat diet.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leticia Álvarez-Amor ◽  
Amparo Luque Sierra ◽  
Antonio Cárdenas ◽  
Lucía López-Bermudo ◽  
Javier López-Beas ◽  
...  

AbstractDietary fatty acids play a role in the pathogenesis of obesity-associated non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance (IR). Fatty acid composition is critical for IR and subsequent NAFLD development. Extra-virgin olive oil (EVOO) is the main source of monounsaturated fatty acids (MUFA) in Mediterranean diets. This study examined whether EVOO-containing high fat diets may prevent diet-induced NAFLD using Ldlr−/−. Leiden mice. In female Ldlr−/−.Leiden mice, the effects of the following high fat diets (HFDs) were examined: a lard-based HFD (HFD-L); an EVOO-based HFD (HFD-EVOO); a phenolic compounds-rich EVOO HFD (HFD-OL). We studied changes in body weight (BW), lipid profile, transaminases, glucose homeostasis, liver pathology and transcriptome. Both EVOO diets reduced body weight (BW) and improved insulin sensitivity. The EVOOs did not improve transaminase values and increased LDL-cholesterol and liver collagen content. EVOOs and HFD-L groups had comparable liver steatosis. The profibrotic effects were substantiated by an up-regulation of gene transcripts related to glutathione metabolism, chemokine signaling and NF-kappa-B activation and down-regulation of genes relevant for fatty acid metabolism. Collectivelly, EVOO intake improved weight gain and insulin sensitivity but not liver inflammation and fibrosis, which was supported by changes in hepatic genes expression.


2020 ◽  
Vol 15 (1) ◽  
pp. 606-618 ◽  
Author(s):  
Dani Dordevic ◽  
Ivan Kushkevych ◽  
Simona Jancikova ◽  
Sanja Cavar Zeljkovic ◽  
Michal Zdarsky ◽  
...  

AbstractThe aim of this study was to simulate olive oil use and to monitor changes in the profile of fatty acids in home-made preparations using olive oil, which involve repeated heat treatment cycles. The material used in the experiment consisted of extra virgin and refined olive oil samples. Fatty acid profiles of olive oil samples were monitored after each heating cycle (10 min). The outcomes showed that cycles of heat treatment cause significant (p < 0.05) differences in the fatty acid profile of olive oil. A similar trend of differences (p < 0.05) was found between fatty acid profiles in extra virgin and refined olive oils. As expected, the main differences occurred in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Cross-correlation analysis also showed differences between the fatty acid profiles. The most prolific changes were observed between the control samples and the heated (at 180°C) samples of refined olive oil in PUFAs, though a heating temperature of 220°C resulted in similar decrease in MUFAs and PUFAs, in both extra virgin and refined olive oil samples. The study showed differences in fatty acid profiles that can occur during the culinary heating of olive oil. Furthermore, the study indicated that culinary heating of extra virgin olive oil produced results similar to those of the refined olive oil heating at a lower temperature below 180°C.


Nutrition ◽  
2021 ◽  
pp. 111411
Author(s):  
Aline Ramos de Araújo ◽  
Geni Rodrigues Sampaio ◽  
Lucas Ribeiro da Silva ◽  
Vera Lúcia Portal ◽  
Melissa Medeiros Markoski ◽  
...  

2014 ◽  
Vol 3 (4) ◽  
pp. 119 ◽  
Author(s):  
Raffaele Romano ◽  
Nadia Manzo ◽  
Immacolata Montefusco ◽  
Annalisa Romano ◽  
Antonello Santini

<p>In this study the use of liquid carbon dioxide, CO<sub>2</sub>, for extraction of oil from olive paste (<em>Peranzana cultivar</em>)<strong> </strong>were examined and extracted oil was compared with oils obtained by centrifugation, pressure and use of chemical solvent.</p> <p>It is well known that the use of CO<sub>2</sub> has many advantages: miscibility with a wide range of molecules, food safety, non-flammability, absence of residues in the extract, possibility of total solvent recovery and no production of olive mill waste water that are highly polluting for the environment and require expansive disposal.</p> <p>Samples were subjected to the following analyses: determination of Free Fatty Acids (FFA), Peroxides Value (PV), Spectrophotometric Indices, Fatty Acids Composition (FA), determination of biophenols content and determination of Volatile Organic Compounds (VOCs). All samples showed FFA, PV and ?K values within the limits established by law for extra-virgin olive oil. The use of CO<sub>2</sub> did not catalyze hydrolysis, oxidation and condensation of double bonds. Centrifuged oils and oils extracted with carbon dioxide presented the lowest PV and FFA values. Extraction with liquid carbon dioxide contributed to an increasing of phenolic content with a value of 270.5 mg/kg, a value twice that of the oils extracted with centrifugation (135.3 mg/kg) or pressure methods (173.2 mg/kg). Oil extracted with liquid carbon dioxide showed the greatest amount of t-2-octenal and t-2-heptenal, giving herbaceous and pungent notes. Moreover the presence of aromatic compounds such as limonene, generally absent in olive oils, was only detected in the sample extracted with liquid carbon dioxide.</p>


2017 ◽  
Vol 6 (5) ◽  
pp. 59 ◽  
Author(s):  
Nadia Segura ◽  
Yenny Pinchak ◽  
Natalie Merlinski ◽  
Miguel Amarillo ◽  
Camila Feller ◽  
...  

Extra virgin olive oil is recognized as a very stable oil because of its composition in fatty acids and its content in natural antioxidants (tocopherols and polyphenols). In the bibliography are works that address different aspects of this stability, from the duration of its useful life to its performance in the frying of foods. Some works also link their stability with the content of natural antioxidants. For example, Franco et al. (2014) studied the content of phenols and their antioxidant capacity in olive oils of seven different varieties. Baccouri et al. (2008) found a good correlation between the oxidative stability (measured in Rancimat) of the oils studied and the concentration of total phenols and tocopherols.


2009 ◽  
Vol 8 (sup2) ◽  
pp. 712-714
Author(s):  
Cristina Giosué ◽  
Judith Louise Capper ◽  
Giuseppe Maniaci ◽  
Dale Elton Bauman ◽  
Francesca Mazza ◽  
...  

Author(s):  
Isy F. de Sousa ◽  
Amanda P. Pedroso ◽  
Iracema S. de Andrade ◽  
Valter T. Boldarine ◽  
Alexandre K. Tashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document