TRAF2 of black carp upregulates MAVS-mediated antiviral signaling during innate immune response

2017 ◽  
Vol 71 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Chen ◽  
Jun Xiao ◽  
Jun Li ◽  
Ji Liu ◽  
Chanyuan Wang ◽  
...  
2008 ◽  
Vol 82 (21) ◽  
pp. 10735-10746 ◽  
Author(s):  
Liang Deng ◽  
Peihong Dai ◽  
Tanvi Parikh ◽  
Hua Cao ◽  
Vijay Bhoj ◽  
...  

ABSTRACT Skin keratinocytes provide a first line of defense against invading microorganisms in two ways: (i) by acting as a physical barrier to pathogen entry and (ii) by initiating a vigorous innate immune response upon sensing danger signals. How keratinocytes detect virus infections and generate antiviral immune responses is not well understood. Orthopoxviruses are dermatotropic DNA viruses that cause lethal disease in humans. Virulence in animal models depends on the virus-encoded bifunctional Z-DNA/double-stranded RNA (dsRNA)-binding protein E3. Here, we report that infection of mouse primary keratinocytes with a vaccinia ΔE3L mutant virus triggers the production of beta interferon (IFN-β), interleukin-6 (IL-6), CCL4, and CCL5. None of these immune mediators is produced by keratinocytes infected with wild-type vaccinia virus. The dsRNA-binding domain of E3 suffices to prevent activation of the innate immune response. ΔE3L induction of IFN-β, IL-6, CCL4, and CCL5 secretion requires mitochondrial antiviral signaling protein (MAVS; an adaptor for the cytoplasmic viral RNA sensors RIG-I and MDA5) and the transcription factor IRF3. IRF3 phosphorylation is induced in keratinocytes infected with ΔE3L, an event that depends on MAVS. The response of keratinocytes to ΔE3L is unaffected by genetic ablation of Toll-like receptor 3 (TLR3), TRIF, TLR9, and MyD88.


2016 ◽  
Vol 57 ◽  
pp. 127-135 ◽  
Author(s):  
Jun Xiao ◽  
Jun Yan ◽  
Hui Chen ◽  
Jun Li ◽  
Yu Tian ◽  
...  

2018 ◽  
Vol 74 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Wu ◽  
Liqun Liu ◽  
Sizhong Wu ◽  
Chanyuan Wang ◽  
Chaoliang Feng ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Zaikun Xu ◽  
Robert Lodge ◽  
Christopher Power ◽  
Eric A. Cohen ◽  
Tom C. Hobman

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors. IMPORTANCE People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis.


2009 ◽  
Vol 83 (16) ◽  
pp. 7815-7827 ◽  
Author(s):  
Stéphane Biacchesi ◽  
Monique LeBerre ◽  
Annie Lamoureux ◽  
Yoann Louise ◽  
Emilie Lauret ◽  
...  

ABSTRACT Viral infection triggers host innate immune responses through cellular sensor molecules which activate multiple signaling cascades that induce the production of interferons (IFN) and other cytokines. The recent identification of mammalian cytoplasmic viral RNA sensors, such as retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and their mitochondrial adaptor, the mitochondrial antiviral signaling protein (MAVS), also called IPS-1, VISA, and Cardif, highlights the significance of these molecules in the induction of IFN. Teleost fish also possess a strong IFN system, but nothing is known concerning the RLRs and their downstream adaptor. In this study, we cloned MAVS cDNAs from several fish species (including salmon and zebrafish) and showed that they were orthologs of mammalian MAVS. We demonstrated that overexpression of these mitochondrial proteins in fish cells led to a constitutive induction of IFN and IFN-stimulated genes (ISGs). MAVS-overexpressing cells were almost fully protected against RNA virus infection, with a strong inhibition of both DNA and RNA virus replication (1,000- and 10,000-fold decreases, respectively). Analyses of MAVS deletion mutants showed that both the N-terminal CARD-like and C-terminal transmembrane domains, but not the central proline-rich region, were indispensable for MAVS signaling function. In addition, we cloned the cDNAs encoding a RIG-I-like molecule from salmonid and cyprinid cell lines. Like the case with MAVS, overexpression of RIG-I CARDs in fish cells led to a strong induction of both IFN and ISGs, conferring on fish cells full protection against RNA virus infection. This report provides the first demonstration that teleost fish possess a functional RLR pathway in which MAVS may play a central role in the induction of the innate immune response.


2018 ◽  
Vol 10 (4) ◽  
pp. 315-327 ◽  
Author(s):  
Xiaoxiao Gao ◽  
Dan Chen ◽  
Xue Hu ◽  
Yuan Zhou ◽  
Yun Wang ◽  
...  

As a key molecule in the antiviral innate immune response, the activation of TANK-binding kinase 1 (TBK1) is under tight regulation. In this report, we identified phosphatidylserine-specific phospholipase PLA1A as a host factor that modulates the TBK1 activation. Knockdown of PLA1A expression suppressed the innate immune signaling induced by RNA viruses, while PLA1A overexpression enhanced the signaling. PLA1A functioned at the TBK1 level of the signaling pathway, as PLA1A silencing blocked TBK1, but not interferon regulatory factor 3 (IRF3) induced interferon-β (IFN-β) promoter activity. The phosphorylation and kinase activity of TBK1 was reduced in PLA1A knockdown cells. Mechanistically, PLA1A was required in TBK1-mitochondrial antiviral signaling protein (MAVS) interactions but not the interactions of TBK1 with other adaptor proteins. Furthermore, PLA1A knockdown reduced the recruitment of TBK1 and IRF3 to mitochondria, concomitant with altered mitochondria morphology.


2016 ◽  
Vol 58 ◽  
pp. 584-592 ◽  
Author(s):  
Jun Xiao ◽  
Jun Yan ◽  
Hui Chen ◽  
Jun Li ◽  
Yu Tian ◽  
...  

2017 ◽  
Vol 69 ◽  
pp. 108-118 ◽  
Author(s):  
Chuanzhe Yan ◽  
Jun Xiao ◽  
Jun Li ◽  
Hui Chen ◽  
Ji Liu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Wang ◽  
Ting Ling ◽  
Ni Zhong ◽  
Liang-Guo Xu

Mitochondrial antiviral signaling protein (MAVS), an adaptor protein, is activated by RIG-I, which is critical for an effective innate immune response to infection by various RNA viruses. Viral infection causes the RIG-I-like receptor (RLR) to recognize pathogen-derived dsRNA and then becomes activated to promote prion-like aggregation and activation of MAVS. Subsequently, through the recruitment of TRAF proteins, MAVS activates two signaling pathways mediated by TBK1-IRF3 and IKK- NF-κb, respectively, and turns on type I interferon and proinflammatory cytokines. This study discovered that NEDD4 binding protein 3 (N4BP3) is a positive regulator of the RLR signaling pathway by targeting MAVS. Overexpression of N4BP3 promoted virus-induced activation of the interferon-β (IFN-β) promoter and interferon-stimulated response element (ISRE). Further experiments showed that knockdown or knockout N4BP3 impaired RIG-I-like receptor (RLR)-mediated innate immune response, induction of downstream antiviral genes, and cellular antiviral responses. We also detected that N4BP3 could accelerate the interaction between MAVS and TRAF2. Related experiments revealed that N4BP3 could facilitate the ubiquitination modification of MAVS. These findings suggest that N4BP3 is a critical component of the RIG-I-like receptor (RLR)-mediated innate immune response by targeting MAVS, which also provided insight into the mechanisms of innate antiviral responses.


2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


Sign in / Sign up

Export Citation Format

Share Document