scholarly journals The HIV-1 Accessory Protein Vpu Downregulates Peroxisome Biogenesis

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Zaikun Xu ◽  
Robert Lodge ◽  
Christopher Power ◽  
Eric A. Cohen ◽  
Tom C. Hobman

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors. IMPORTANCE People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis.

2017 ◽  
Vol 71 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Chen ◽  
Jun Xiao ◽  
Jun Li ◽  
Ji Liu ◽  
Chanyuan Wang ◽  
...  

2020 ◽  
Author(s):  
Constanza E. Espada ◽  
Corine St. Gelais ◽  
Serena Bonifati ◽  
Victoria V. Maksimova ◽  
Michael P. Cahill ◽  
...  

Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) restricts HIV-1 replication by limiting the intracellular dNTP pool. SAMHD1 also suppresses the activation of NF-κB in response to viral infections and inflammatory stimuli. However, the mechanisms by which SAMHD1 negatively regulates this pathway remain unclear. Here we show that SAMHD1-mediated suppression of NF-κB activation is modulated by two key mediators of NF-κB signaling, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and transforming growth factor-ß-activated kinase-1 (TAK1). We compared NF-κB activation stimulated by interleukin (IL)-1ß in monocytic THP-1 control and SAMHD1 knockout (KO) cells with and without partial TRAF6 knockdown (KD), or in cells treated with TAK1 inhibitors. Relative to control cells, IL-1ß-treated SAMHD1 KO cells showed increased phosphorylation of the inhibitor of NF-κB (IκBα), an indication of pathway activation, and elevated levels of TNF-α mRNA. Moreover, SAMHD1 KO combined with TRAF6 KD or pharmacological TAK1 inhibition reduced IκBα phosphorylation and TNF-α mRNA to the level of control cells. SAMHD1 KO cells infected with single-cycle HIV-1 showed elevated infection and TNF-α mRNA levels compared to control cells, and the effects were significantly reduced by TRAF6 KD or TAK1 inhibition. We further demonstrated that overexpressed SAMHD1 inhibited TRAF6-stimulated NF-κB reporter activity in HEK293T cells in a dose-dependent manner. SAMHD1 contains a nuclear localization signal (NLS), but an NLS-defective SAMHD1 exhibited a suppressive effect similar to the wild-type protein. Our data suggest that the TRAF6-TAK1 axis contributes to SAMHD1-mediated suppression of NF-κB activation and HIV-1 infection. Importance Cells respond to pathogen infection by activating a complex innate immune signaling pathway, which culminates in the activation of transcription factors and secretion of a family of functionally and genetically related cytokines. However, excessive immune activation may cause tissue damage and detrimental effects on the host. Therefore, in order to maintain host homeostasis, the innate immune response is tightly regulated during viral infection. We have reported SAMHD1 as a novel negative regulator of the innate immune response. Here, we provide new insights into SAMHD1-mediated negative regulation of the NF-κB pathway at the TRAF6-TAK1 checkpoint. We show that SAMHD1 inhibits TAK1 activation and TRAF6 signaling in response to proinflammatory stimuli. Interestingly, TRAF6 knockdown in SAMHD1-deficient cells significantly inhibited HIV-1 infection and activation of NF-κB induced by virus infection. Our research reveals a new negative regulatory mechanism by which SAMHD1 participates in the maintenance of cellular homeostasis during HIV-1 infection and inflammation.


2008 ◽  
Vol 82 (21) ◽  
pp. 10735-10746 ◽  
Author(s):  
Liang Deng ◽  
Peihong Dai ◽  
Tanvi Parikh ◽  
Hua Cao ◽  
Vijay Bhoj ◽  
...  

ABSTRACT Skin keratinocytes provide a first line of defense against invading microorganisms in two ways: (i) by acting as a physical barrier to pathogen entry and (ii) by initiating a vigorous innate immune response upon sensing danger signals. How keratinocytes detect virus infections and generate antiviral immune responses is not well understood. Orthopoxviruses are dermatotropic DNA viruses that cause lethal disease in humans. Virulence in animal models depends on the virus-encoded bifunctional Z-DNA/double-stranded RNA (dsRNA)-binding protein E3. Here, we report that infection of mouse primary keratinocytes with a vaccinia ΔE3L mutant virus triggers the production of beta interferon (IFN-β), interleukin-6 (IL-6), CCL4, and CCL5. None of these immune mediators is produced by keratinocytes infected with wild-type vaccinia virus. The dsRNA-binding domain of E3 suffices to prevent activation of the innate immune response. ΔE3L induction of IFN-β, IL-6, CCL4, and CCL5 secretion requires mitochondrial antiviral signaling protein (MAVS; an adaptor for the cytoplasmic viral RNA sensors RIG-I and MDA5) and the transcription factor IRF3. IRF3 phosphorylation is induced in keratinocytes infected with ΔE3L, an event that depends on MAVS. The response of keratinocytes to ΔE3L is unaffected by genetic ablation of Toll-like receptor 3 (TLR3), TRIF, TLR9, and MyD88.


2004 ◽  
Vol 78 (15) ◽  
pp. 8114-8119 ◽  
Author(s):  
Li-Ying Liou ◽  
Christine H. Herrmann ◽  
Andrew P. Rice

ABSTRACT The Tat protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication and activates RNA polymerase II transcriptional elongation through the association with a cellular protein kinase composed of Cdk9 and cyclin T1. Tat binds to this kinase complex through a direct protein-protein interaction with cyclin T1. Monocytes/macrophages are important targets of HIV-1 infection, and previous work has shown that cyclin T1 but not Cdk9 protein expression is low in monocytes isolated from blood. While Cdk9 expression is expressed at a high level during monocyte differentiation to macrophages in vitro, cyclin T1 expression is induced during the first few days of differentiation and is shut off after 1 to 2 weeks. We show here that the shutoff of cyclin T1 expression in late-differentiated macrophages involves proteasome-mediated proteolysis. We also show that cyclin T1 can be reinduced by a number of pathogen-associated molecular patterns that activate macrophages, indicating that up-regulation of cyclin T1 is part of an innate immune response. Furthermore, we found that HIV-1 infection early in macrophage differentiation results in sustained cyclin T1 expression, while infection at late times in differentiation results in the reinduction of cyclin T1. Expression of the viral Nef protein from an adenovirus vector suggests that Nef contributes to the HIV-1 induction of cyclin T1. These findings suggest that HIV-1 infection hijacks a component of the innate immune response in macrophages that results in enhancement rather than inhibition of viral replication.


2009 ◽  
Vol 83 (16) ◽  
pp. 7815-7827 ◽  
Author(s):  
Stéphane Biacchesi ◽  
Monique LeBerre ◽  
Annie Lamoureux ◽  
Yoann Louise ◽  
Emilie Lauret ◽  
...  

ABSTRACT Viral infection triggers host innate immune responses through cellular sensor molecules which activate multiple signaling cascades that induce the production of interferons (IFN) and other cytokines. The recent identification of mammalian cytoplasmic viral RNA sensors, such as retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and their mitochondrial adaptor, the mitochondrial antiviral signaling protein (MAVS), also called IPS-1, VISA, and Cardif, highlights the significance of these molecules in the induction of IFN. Teleost fish also possess a strong IFN system, but nothing is known concerning the RLRs and their downstream adaptor. In this study, we cloned MAVS cDNAs from several fish species (including salmon and zebrafish) and showed that they were orthologs of mammalian MAVS. We demonstrated that overexpression of these mitochondrial proteins in fish cells led to a constitutive induction of IFN and IFN-stimulated genes (ISGs). MAVS-overexpressing cells were almost fully protected against RNA virus infection, with a strong inhibition of both DNA and RNA virus replication (1,000- and 10,000-fold decreases, respectively). Analyses of MAVS deletion mutants showed that both the N-terminal CARD-like and C-terminal transmembrane domains, but not the central proline-rich region, were indispensable for MAVS signaling function. In addition, we cloned the cDNAs encoding a RIG-I-like molecule from salmonid and cyprinid cell lines. Like the case with MAVS, overexpression of RIG-I CARDs in fish cells led to a strong induction of both IFN and ISGs, conferring on fish cells full protection against RNA virus infection. This report provides the first demonstration that teleost fish possess a functional RLR pathway in which MAVS may play a central role in the induction of the innate immune response.


2021 ◽  
pp. 23-58
Author(s):  
Valarmathy Murugaiah ◽  
Hadida Yasmin ◽  
Hrishikesh Pandit ◽  
Kasturi Ganguly ◽  
Rambhadur Subedi ◽  
...  

2012 ◽  
Vol 86 (16) ◽  
pp. 8499-8506 ◽  
Author(s):  
Brian P. Doehle ◽  
Kristina Chang ◽  
Lamar Fleming ◽  
John McNevin ◽  
Florian Hladik ◽  
...  

Acute virus infection induces a cell-intrinsic innate immune response comprising our first line of immunity to limit virus replication and spread, but viruses have developed strategies to overcome these defenses. HIV-1 is a major public health problem; however, the virus-host interactions that regulate innate immune defenses against HIV-1 are not fully defined. We have recently identified the viral protein Vpu to be a key determinant responsible for HIV-1 targeting and degradation of interferon regulatory factor 3 (IRF3), a central transcription factor driving host cell innate immunity. IRF3 plays a major role in pathogen recognition receptor (PRR) signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Here we interrogate the cellular responses to target cell infection with Vpu-deficient HIV-1 strains. Remarkably, in the absence of Vpu, HIV-1 triggers a potent intracellular innate immune response that suppresses infection. Thus, HIV-1 can be recognized by PRRs within the host cell to trigger an innate immune response, and this response is unmasked only in the absence of Vpu. Vpu modulation of IRF3 therefore prevents virus induction of specific innate defense programs that could otherwise limit infection. These observations show that HIV-1 can indeed be recognized as a pathogen in infected cells and provide a novel and effective platform for defining the native innate immune programs of target cells of HIV-1 infection.


2018 ◽  
Vol 10 (4) ◽  
pp. 315-327 ◽  
Author(s):  
Xiaoxiao Gao ◽  
Dan Chen ◽  
Xue Hu ◽  
Yuan Zhou ◽  
Yun Wang ◽  
...  

As a key molecule in the antiviral innate immune response, the activation of TANK-binding kinase 1 (TBK1) is under tight regulation. In this report, we identified phosphatidylserine-specific phospholipase PLA1A as a host factor that modulates the TBK1 activation. Knockdown of PLA1A expression suppressed the innate immune signaling induced by RNA viruses, while PLA1A overexpression enhanced the signaling. PLA1A functioned at the TBK1 level of the signaling pathway, as PLA1A silencing blocked TBK1, but not interferon regulatory factor 3 (IRF3) induced interferon-β (IFN-β) promoter activity. The phosphorylation and kinase activity of TBK1 was reduced in PLA1A knockdown cells. Mechanistically, PLA1A was required in TBK1-mitochondrial antiviral signaling protein (MAVS) interactions but not the interactions of TBK1 with other adaptor proteins. Furthermore, PLA1A knockdown reduced the recruitment of TBK1 and IRF3 to mitochondria, concomitant with altered mitochondria morphology.


2022 ◽  
Author(s):  
sunnie M yoh ◽  
Joao Mamede ◽  
Derrick Lau ◽  
Narae Ahn ◽  
Maria T Sanchez ◽  
...  

Cyclic GMP-AMP synthase (cGAS) is a primary sensor of aberrant DNA that governs an innate immune signaling cascade, leading to the induction of the type-I interferon response. We have previously identified polyglutamine binding protein 1, PQBP1, as an adaptor molecule required for cGAS-mediated innate immune response of lentiviruses, including the human immunodeficiency virus 1 (HIV-1), but dispensable for the recognition of DNA viruses. HIV-1-encoded DNA is synthesized as a single copy from its RNA genome, and is subsequently integrated into the host chromatin. HIV-1 then produces progeny through amplification and packaging of its RNA genome, thus, in contrast to DNA viruses, HIV-1 DNA is both transient and of low abundance. However, the molecular basis for the detection and verification of this low abundance HIV-1 DNA pathogen-associated molecular pattern (PAMP) is not understood. Here, we elucidate a two-factor authentication strategy that is employed by the innate immune surveillance machinery to selectively respond to the low concentration of PAMP, while discerning these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates intact viral capsid, which serves as a primary verification step for the viral nucleic acid cargo. As the reverse transcription and capsid disassembly initiate, cGAS protein is then recruited to the capsid in a PQBP1-dependent manner, enabling cGAS molecules to be co-positioned at the site of PAMP generation. Thus, these data indicate that PQBP1 recognition of the HIV-1 capsid sanctions a robust cGAS-dependent response to a limited abundance and short-lived DNA PAMP. Critically, this illuminates a molecular strategy wherein the modular recruitment of co-factors to germline encoded pattern recognition receptors (PRRs) serves to enhance repertoire of pathogens that can be sensed by the innate immune surveillance machinery.


Sign in / Sign up

Export Citation Format

Share Document