Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber

Fuel ◽  
2004 ◽  
Vol 83 (9) ◽  
pp. 1151-1164 ◽  
Author(s):  
Helle G. Nygaard ◽  
Søren Kiil ◽  
Jan E. Johnsson ◽  
Jørgen N. Jensen ◽  
Jørn Hansen ◽  
...  
Keyword(s):  
Flue Gas ◽  
So2 Gas ◽  
1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


2020 ◽  
pp. 128296
Author(s):  
Ruijie Cao ◽  
Renhui Ruan ◽  
Houzhang Tan ◽  
Shengjie Bai ◽  
Yongle Du ◽  
...  

Fuel ◽  
2019 ◽  
Vol 238 ◽  
pp. 507-513 ◽  
Author(s):  
Maria Jędrusik ◽  
Mieczysław A. Gostomczyk ◽  
Arkadiusz Świerczok ◽  
Dariusz Łuszkiewicz ◽  
Mariola Kobylańska
Keyword(s):  
Flue Gas ◽  

2013 ◽  
Vol 10 (2) ◽  
pp. 241-248

A bench-scale biofiltration system was developed to evaluate the NOx removal efficiency under high oxygen concentration. The system had been running for 120 days and kept on a steady NOx removal rate above 80%. A stable NOx removal with an efficiency of more than 80% from the gas phase can be obtained by the bioreactor concept, when flue gas containing NO (400-600 ppmv) and a certain O2 concentration (0-20%). In the blank experiment, less than 35% NO was removed as oxygen increased. The tendency of the three curves about NO removal rate with various O2 concentrations was mainly similar but some differences in the highest and lowest removal rate happened in the definite O2 concentration range. Oxygen was shown to have a significant effect on NOx removal at the first two or three days when oxygen concentration increased sharply. The higher concentration NO influent gas contained, the longer time the microflora need to regain activities. Compared with humidifier, microbial regenerator which was incorporated in biofilter can improve aerobic denitrifying bacteria activity by applying alternating oxic–anoxic conditions in the presence of nitrate and nitrite. Oxidation-Reduction Potential (ORP) and Dissolved Oxygen (DO) were used to control the dose of carbon source.


Author(s):  
Hongmin Yang ◽  
Wenhui Hou ◽  
Hairu Zhang ◽  
Leiyu Zhou

AbstractA promising approach has been developed to oxidize and remove elemental mercury species from coal-fired flue gas. The oxidation of gas-phase elemental mercury (Hg


Author(s):  
Weigang Lin ◽  
Anker D. Jensen ◽  
Jan E. Johnsson ◽  
Kim Dam-Johansen

This paper summarizes the major problems in firing and co-firing the annual biomass, such as straw, in both lab-scale and full-scale fluidized bed combustors. Two types of problems were studied: operational problems, such as agglomeration, deposition and corrosion; and emission problems, e.g. emissions of NO and SO2. Measurements of deposition and corrosion rate on the heat transfer surfaces, as well as gas phase alkali metal concentrations, were performed in full scale CFB boilers (an 80 MWth and a 20 MWth plant), which have been co-firing coal with straw and other biomass. Severe corrosion and deposition were observed in the superheater located in the loop-seal of the 80 MWth boiler. The boiler load variation has impact on the operation parameters. When the fraction of biomass with a high K-content (>1 wt. %) was higher than 60% on a thermal basis, the boiler suffered from severe agglomeration problems. Lab-scale experiments were carried out for the fundamental understanding of phenomena found in full-scale boilers and for testing possible solutions to the problems. The results showed a strong tendency of agglomeration in fluidized beds during combustion of straw, which normally have a high content of potassium and chlorine. The results indicate that the operational problems may be minimized by a combination of additives, improved boiler design, split of combustion air and detection of agglomeration at an early stage.


Author(s):  
Neelesh S. Bhopatkar ◽  
Heng Ban ◽  
Thomas K. Gale

This study is a part of a comprehensive investigation, to conduct bench-, pilot-, and full-scale experiments and theoretical studies to elucidate the fundamental mechanisms associated with mercury oxidation and capture in coal-fired power plants. The objective was to quantitatively describe the mechanisms governing adsorption, desorption, and oxidation of mercury in coal-fired flue gas carbon, and establish reaction-rate constants based on experimental data. A chemical-kinetic model was developed which consists of homogeneous mercury oxidation reactions as well as heterogeneous mercury adsorption reactions on carbon surfaces. The homogeneous mercury oxidation mechanism has eight reactions for mercury oxidation. The homogeneous mercury oxidation mechanism quantitatively predicts the extent of mercury oxidation for some of datasets obtained from synthetic flue gases. However, the homogeneous mechanism alone consistently under predicts the extent of mercury oxidation in full scale and pilot scale units containing actual flue gas. Heterogeneous reaction mechanisms describe how unburned carbon or activated carbon can effectively remove mercury by adsorbing hydrochloric acid (HCI) to form chlorinated carbon sites, releasing the hydrogen. The elemental mercury may react with chlorinated carbon sites to form sorbed HgCl. Thus mercury is removed from the gas-phase and stays adsorbed on the carbon surface. Predictions using this model have very good agreement with experimental results.


1994 ◽  
Vol 29 (9) ◽  
pp. 307-312 ◽  
Author(s):  
Michael Vendrup ◽  
Christina Sund

Wet scrubber systems for flue gas treatment, giving rise to a production of wastewater contaminated with heavy metals, are used at many coal-fired power stations in Europe, the USA and Japan. In order to remove the heavy metals from the wastewater, chemical precipitation with hydroxide and sulphide is applied. Results from two full-scale plants are given. Due to strict regulations for landfilling of waste contaminated with heavy metals, the amount of sludge must be minimised. Different techniques to meet this requirement are described. Biological post-treatment to reduce the nitrogen content of the wastewater will apparently be a need in the future, and pilot-scale testing is presently being carried out to determine the basic operation rules for a full-scale plant.


1984 ◽  
Vol 18 (10) ◽  
pp. 2095-2104 ◽  
Author(s):  
James F. Meagher ◽  
Kenneth J. Olszyna ◽  
Menachem Luria

Sign in / Sign up

Export Citation Format

Share Document