scholarly journals Interaction study of montmorillonite-crude oil-brine: Molecular-level implications on enhanced oil recovery during low saline water flooding from hydrocarbon reservoirs

Fuel ◽  
2019 ◽  
Vol 254 ◽  
pp. 115725 ◽  
Author(s):  
Saheli Sanyal ◽  
Uttam K. Bhui ◽  
Dileep Balaga ◽  
Shashi Saurabh Kumar
Fuel ◽  
2019 ◽  
Vol 235 ◽  
pp. 822-831 ◽  
Author(s):  
Miku Takeya ◽  
Mai Shimokawara ◽  
Yogarajah Elakneswaran ◽  
Toyoharu Nawa ◽  
Satoru Takahashi

2021 ◽  
Author(s):  
Christophe Darnault ◽  
Bruce Phibbs ◽  
Casey McCarroll ◽  
Brightin Blanton

<p>Advances in the field of nanoscience and nanotechnology have resulted in the development of engineered nanoparticles, with unique physico-chemical properties, and their applications to all the sectors of industry, including the petroleum industry. This presentation will discuss several advances and applications of silica-based nanofluids in chemical enhanced oil recovery (EOR) processes related to interfacial phenomena in multiphase systems and physics of multiphase flow in porous media, and in particular the oil recovery characteristics resulting from nanofluids based low-salinity water flooding and chemical EOR processes. Laboratory experiments were carried out using homogeneous sandpack columns simulating oil-wet and water-wet reservoirs. To simulate oil-wet reservoirs, the sandpack columns were saturated with a light crude oil (West Texas Intermediate) at first. While in the case of the simulated water-wet reservoirs, these reservoirs were made by saturating the sandpack columns initially with a 1.0 wt% brine (NaCl) and then followed by an injection of the light crude oil. The subsequent oil-saturated (oil-wet system) and oil-brine mixture (water-wet system) within the sandpack columns were then subject to water flooding (non-sequenced recovery) or EOR processes (sequenced recovery) utilizing brine and/or surfactant as controls as well as low (0.01 wt%) and high (0.1 wt%) silica-based nanofluids. When compared with the high concentration of silica-based nanofluid, the low silica-based nanofluid concentration produced low fractional and cumulative oil recovery results in the water flooding process of oil recovery for both oil-wet and water-wet reservoir systems; however, the low silica-based nanofluid concentration was found to be the most effective with EOR process for both oil-wet and water-wet reservoir systems. Our findings permit to choose optimal concentrations of silica nanoparticles to be employed for either water flooding or EOR processes in order to increase the oil extraction efficiency.</p>


Author(s):  
Yiqiang Fan ◽  
Kexin Gao ◽  
Jie Chen ◽  
Wengang Li ◽  
Yajun Zhang

About one-third of the crude oil is trapped inside the pores of the carbonate and sandstone after the primary and secondary oil recovery, various methods have been used for the flooding of the trapped crude oil. Due to the opaque nature of the sandstone and shale, the visualization of the fluid flow inside the porous structure conventionally involved the use of very sophisticated equipment like X-ray computed microtomography. In this approach, a low-cost method for the mimic of porous structure for the enhanced oil recovery is proposed using the polymethyl methacrylate (PMMA)-based microfluidic devices with the laser ablated microstructures, where the microstructure is the replica of a real rock fracture. Since the PMMA is optically clear in the visible range, the detailed fluid flow inside the porous structure could be obtained for a better understanding of the liquid front propagation and rheology in the pore-scale. The effect of water flooding is also tested with the proposed microfluidic devices under various flooding rates for the demonstration of oil recovery enhancement with the proposed technology.


2021 ◽  
Author(s):  
Rukuan Chai ◽  
Yuetian Liu ◽  
Yuting He ◽  
Qianjun Liu ◽  
Wenhuan Gu

Abstract Tight oil reservoir plays an increasingly important role in the world energy system, but its recovery is always so low. Hence, a more effective enhanced oil recovery (EOR) technology is urgently needed. Meanwhile, greenhouse effect is more and more serious, a more effective carbon capture and sequestration (CCS) method is also badly needed. Direct current voltage assisted carbonated water-flooding is a new technology that combines direct current voltage with carbonated water-flooding to enhance oil recovery and CO2 sequestration efficiency, simultaneously. Experimental studies were conducted from macroscopic-scale to microscopic-scale to study the performance and mechanism of direct current voltage assisted carbonated water-flooding. Firstly, core flood experiments were implemented to study the effect of direct current voltage assisted carbonated water on oil recovery and CO2 sequestration efficiency. Secondly, contact angle and interfacial tension/dilatational rheology were measured to analyze the effect of direct current voltage assisted carbonated water on crude oil-water-rock interaction. Thirdly, total organic carbon (TOC), gas chromatography (GC), and electrospray ionization-fourier transform ion cyclotron resonance-mass spectrometry (ESI FT ICR-MS) were used to investigate the organic composition change of produced effluents and crude oil in direct current voltage assisted carbonated water treatment. Through direct current voltage assisted carbonated water-flooding experiments, the following results can be obtained. Firstly, direct current voltage assisted carbonated waterflooding showed greater EOR capacity and CO2 sequestration efficiency than individual carbonated water and direct current voltage treatment. With the increase of direct current voltage, oil recovery increases to 38.67% at 1.6V/cm which much higher than 29.07% of carbonated water-flooding and then decreases, meanwhile, CO2 output decreases to only 35.5% at 1.6V/cm which much lower than 45.6% of carbonated water-flooding and then increases. Secondly, in direct current voltage assisted carbonated water-flooding, the wettability alteration is mainly caused by carbonated water and the effect of direct current can be neglected. While both carbonated water and direct current have evident influence on interfacial properties. Herein, with direct current voltage increasing, the interfacial tension firstly decreases and then increases, the interfacial viscoelasticity initially strengthens and then weakens. Thirdly, GC results indicated that crude oil cracking into lighter components occurs during direct current voltage assisted carbonated water-flooding, with the short-chain organic components increasing and the long-chain components decreasing. Meanwhile, TOC and ESI FT ICR-MS results illustrated that CO2 electroreduction do occur in direct current voltage assisted carbonated water-flooding with the dissolved organic molecules increases and the emergence of formic acid. Conclusively, the synergy of CO2 electrochemical reduction into formic acid in aqueous solution and the long-chain molecules electrostimulation pyrolysis into short ones in crude oil mutually resulted in the enhancement of crude oil-carbonated water interaction. This paper proposed a new EOR & CCS technology-direct current voltage assisted carbonated water-flooding. It showed great research and application potential on tight oil development and greenhouse gas control. More work needs to be done to further explore its mechanism. This paper constructs a multiscale & interdisciplinary research system to study the multidisciplinary (EOR&CCS) problem. Specifically, a series connected physical (Core displacement, Contact angle, and Interfacial tension/rheology measurements) and chemistry (TOC, GS, and ESI FT ICR-MS) experiments are combined to explore its regularity and several physics (Atomic physics) and chemistry (Electrochemistry/Inorganic Chemistry) theories are applied to explain its mechanisms.


Sign in / Sign up

Export Citation Format

Share Document