Effects of high intake-air temperature on emission characteristics under constant charging efficiency

Fuel ◽  
2020 ◽  
Vol 273 ◽  
pp. 117733
Author(s):  
Seongin Jo ◽  
Hyung Jun Kim ◽  
Suhan Park

The homogeneous charge compression ignition (HCCI) engine is the promising technology to reduce the pollutants without affecting its performance and it is also proved by the many studies. This study investigates the performance and emission characteristics of HCCI engine fuelled with diesel –waste cooking oil (WCO) blends and also analysed the effect of air temperature and fuel properties on HCCI engine combustion. The experimental investigation was conducted with single cylinder DI diesel engine and it was slightly modified to port injection system for premixing the charge. The electric air heater was adopted in suction pipe to preheat the inlet air. The experimental investigation conducted in two phases, in the first phase the conventional DI diesel engine was tested with different fuel blends such as B25, B50, B75 and B100 and notes the readings. In the next phase, HCCI engine was operated with same blend ratios. During the experimentation on HCCI engine, the suction air temperature was varied between 40⁰C to 90⁰C. From the experimental results, it was found that the HCCI engine has emitted low NOx and smoke emissions at 80⁰C of air temperature for all the blends. Whereas the HCCI engine emitted more carbon monoxide (CO) and hydrocarbon (HC) emissions due to lean mixture causes misfiring in the chamber. In addition, it is also noted that the value of CO and HC has been varied with diesel –WCO blends. The specific fuel consumption (SFC) is increased for diesel and biodiesel fuel in HCCI engine compared to compression ignition (CI) engine


2011 ◽  
Vol 80-81 ◽  
pp. 752-756
Author(s):  
You Hong Xiao ◽  
Pei Lin Zhou

This paper presented results of a study on emission characteristics of diesel engines. A numerical simulation model for a diesel engine was established by GT-POWER. Emission species studied include of NO, CO and HC. The developed model was validated by engine tests under laboratory condition. Based on the model, the simulation changing the variable parameters including injection timing, intake air temperature and EGR (exhaust gas recirculation) ratio were carried out to study their effect on emissions. The simulation results showed that with the decrease of CA BTDC, intake air temperature, compression ratio and EGR ratio respectively, the NO emission decreased. However, the CO and HC emissions increased.


2001 ◽  
Vol 84 (5) ◽  
pp. 1-9
Author(s):  
Hidenori Mimura ◽  
Hidetaka Shimawaki ◽  
Kuniyoshi Yokoo

Sign in / Sign up

Export Citation Format

Share Document