scholarly journals A three-dimensional semi-quantitative method to monitor the evolution of polycyclic aromatic hydrocarbons from vacuum gas oil feedstocks to lighter products

Fuel ◽  
2021 ◽  
Vol 296 ◽  
pp. 120175
Author(s):  
Carole Reymond ◽  
Agnès Le Masle ◽  
Cyril Colas ◽  
Nadège Charon
2018 ◽  
Vol 61 (5) ◽  
pp. 294-301 ◽  
Author(s):  
Keisuke Kinugasa ◽  
Fumiya Nakano ◽  
Satoko Nagano ◽  
Satoshi Suganuma ◽  
Etsushi Tsuji ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Haiying Wang ◽  
Chuantao Li

The general (α,t)-path connectivity index of a molecular graph originates from many practical problems such as three-dimensional quantitative structure-activity (3D QSAR) and molecular chirality. It is defined as Rtα(G)=∑Pt=vi1vi2⋯vit+1⊆G[d(vi1)d(vi2)⋯d(vit+1)]α, where the summation is taken over all possible paths of length t of G and we do not distinguish between the paths vi1vi2⋯vit+1 and vit+1⋯vi2vi1. In this paper, we focus on the structures of Polycyclic Aromatic Hydrocarbons (PAHn), which play a role in organic materials and medical sciences. We try to compute the exact general (α,3)-path connectivity indices of this family of hydrocarbon structures. Furthermore, we exactly derive the monotonicity and the extremal values of R3α(PAHn) for any real number α. These valuable results could produce strong guiding significance to these applied sciences.


Author(s):  
Beijing Zhong ◽  
Shuai Dang ◽  
Jun Xi

In this study, numerical simulations for an n-heptane fueled Chaochai 6102bzl direct injection diesel engine are performed in order to predict the chemical details of the combustion process and resulting polycyclic aromatic hydrocarbons (such as benzene, naphthalene, phenanthrene and pyrene) formation. The diesel geometry and reduced kinetic mechanism of n-heptane oxidation, which includes only 86 reactions and 57 species, have been developed and incorporated into the computational fluid dynamics code, FLUENT. The diesel unsteady laminar flamelet model, turbulence model and spray model have been employed in the numerical simulations. The numerical simulation results showed that the polycyclic aromatic hydrocarbons were firstly increased with the increase of diesel crank angel and then decreased, which was mostly located at the bottom of diesel combustion chamber wall.


2017 ◽  
Vol 82 (1) ◽  
pp. 107-116
Author(s):  
Kahina Bedda ◽  
Boudjema Hamada ◽  
Nikolay Kuzichkin ◽  
Kirill Semikin

The purification of a hydrotreated gas oil by liquid-liquid extraction with N-methylpyrrolidone as solvent has been studied. The results showed that this method, under appropriate experimental conditions, has reduced sulphur content of the gas oil from 174 ppm to 28 ppm, nitrogen content has decreased from 58 ppm to 15 ppm, aromatics content has diminished from 27.1 % to 13.8 % and the polycyclic aromatic hydrocarbons were totally extracted. The refined gas oil obtained can be used to produce clean diesel fuel for the environment.


2020 ◽  
Vol 17 (7) ◽  
pp. 479
Author(s):  
Dongqin Tan ◽  
Jing Jin ◽  
Cuicui Guo ◽  
Dhanjai ◽  
Jiping Chen

Environmental contextRemediation of wastewater containing polycyclic aromatic hydrocarbons and metals is essential to limit adverse effects on the environment and human health. Using a simple precipitation method, we prepared porous magnetic MgO hybrids for use as a material for removing pollutants from wastewater. The material showed excellent removal performance for 12 polycyclic aromatic hydrocarbons and cadmium ions, and thus has potential applications in wastewater treatment. AbstractHierarchical porous magnetic MgO hybrids (Fe3O4/MgO) are controllably synthesised based on a facile precipitation process. The resulting material displays a three-dimensional architecture with nest-like morphology, large surface area (135.2m2 g−1) and uniform mesochannels (5–35nm). The adsorption equilibrium data of target polycyclic aromatic hydrocarbons (PAHs) on Fe3O4/MgO sorbents are described by the Langmuir isotherm model. The composites show a strong tendency for the removal of PAHs owing to their porous structure that possesses an excellent affinity for PAHs. Under the optimal conditions, a removal of more than 70% is achieved for 12 PAHs. The materials also exhibit a good removal ability of cadmium (Cd2+) from water with fast adsorption (<5min) and high removal percentage (>80%). Moreover, the composites possess sufficient magnetism for separation. To demonstrate the performance of the sorbents, Fe3O4/MgO is exposed to aqueous samples spiked with low concentrations of PAHs and Cd2+. In almost all cases, the composites are superior to the commercially available sorbents as well as un-functionalised Fe3O4 nanoparticles. Therefore, this work provides a promising approach for the simultaneous removal of PAHs and Cd2+ from water using multifunctional MgO microspheres.


Sign in / Sign up

Export Citation Format

Share Document