An assessment of soot chemical property from a modern diesel engine fueled with dimethyl carbonate-diesel blends

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122220
Author(s):  
Chenyang Fan ◽  
Ze Guan ◽  
Jiangjun Wei ◽  
Mingzhang Pan ◽  
Haozhong Huang ◽  
...  
Author(s):  
G D Zhang ◽  
H Liu ◽  
X X Xia ◽  
W G Zhang ◽  
J H Fang

The physical and chemical properties of some oxygenated compounds are discussed, including dimethoxymethane (methylal, or DMM), dimethyl carbonate (DMC), and ethyl acetate. In particular, DMC may be a promising additive for diesel fuel owing to its high oxygen content, no carbon-carbon atomic bonds, suitable boiling point, and solubility in diesel fuel. The aim of this research was to study the combustion characteristics and performance of diesel engines operating on diesel fuel mixed with DMC. The experimental results have shown that particulate matter (PM) emissions can be reduced using the DMC oxygenated compound. The combustion analysis indicated that the ignition delay of the engine fuelled with DMC-diesel blended fuel is longer, but combustion duration is much shorter, and the thermal efficiency is increased compared with that of a base diesel engine. Further, if injection is also delayed, NOx emissions can be reduced while PM emissions are still reduced significantly. The experimental study found that diesel engines fuelled with DMC additive had improved combustion and emission performances.


2005 ◽  
Vol 12 (3) ◽  
pp. 15-20 ◽  
Author(s):  
C S Cheung ◽  
S C Lee ◽  
A Kwok ◽  
C W Tung

2021 ◽  
Vol 13 (4) ◽  
pp. 1749
Author(s):  
Laura Aguado-Deblas ◽  
Jesús Hidalgo-Carrillo ◽  
Felipa M. Bautista ◽  
Carlos Luna ◽  
Juan Calero ◽  
...  

Dimethyl carbonate (DMC) is an interesting blending component for diesel fuel (D) owing to the high oxygen content (53 wt.%) and the absence of C–C bonds in its structure. Moreover, DMC can be produced from CO2 and methanol, which provides a renewable way to reduce anthropogenic CO2. This research has been addressed to assess the use of DMC as a solvent of sunflower oil (SO) and castor oil (CO), with the purpose of obtaining biofuels that can replace fossil diesel as much as possible. The blending of DMC with straight vegetable oils (SVOs) reduces their high viscosity, allowing their usage as drop-in biofuels without chemical treatments. Based on viscosity requirements of European Standard EN 590, the optimal DMC/SVO double blends have been tested as direct biofuels by themselves or mixed with fossil diesel in D/DMC/SVO triple blends. Relevant physico-chemical properties of fuels have been analyzed. Engine parameters such as power output, brake-specific fuel consumption (BSFC) and soot emissions have been studied to determine the effect of new biofuels on efficiency of a diesel engine. An outstanding engine efficiency is shown by the studied D/DMC/SVO triple blends, either with SO or CO as an SVO. The low calorific value of DMC is the main reason for reduction in power and BSFC, as the amount of diesel in the triple blends is reduced. Experimental results demonstrate that the use of these biofuels allows the replacement of up to 40% of fossil diesel, without compromising the power and BSFC of the engine, and accomplishing optimal cold flow properties and a marked drop in exhaust emissions.


Author(s):  
R. Arul Prakash ◽  
S. Harish ◽  
R. Vijayanandh ◽  
M. Senthil Kumar

The present work examines the oxygen enrichment on diesel engine at the fuel side and air side. Oxygenation at the fuel side is done by blending the Dimethyl carbonate (DMC) additive with a maximum percentage of oxygen whereas that of air side is done by coupling a blower to the inlet manifold. The experiment was conducted with four different blends of oxygenated additives with diesel, and then the effects of supercharging in these blends were analyzed. The performance and emission characteristics of DMC blend with diesel fuel were examined and compared with the base engine characteristics. The results show that for 5% of DMC there is an increase in the thermal efficiency of the engine and decrease the CO emissions.


2016 ◽  
Vol 13 (11) ◽  
pp. 1120-1128 ◽  
Author(s):  
Deqing Mei ◽  
Shan Yue ◽  
Xiaodong Zhao ◽  
Klaus Hielscher ◽  
Roland Baar

Sign in / Sign up

Export Citation Format

Share Document