scholarly journals Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends

2021 ◽  
Vol 13 (4) ◽  
pp. 1749
Author(s):  
Laura Aguado-Deblas ◽  
Jesús Hidalgo-Carrillo ◽  
Felipa M. Bautista ◽  
Carlos Luna ◽  
Juan Calero ◽  
...  

Dimethyl carbonate (DMC) is an interesting blending component for diesel fuel (D) owing to the high oxygen content (53 wt.%) and the absence of C–C bonds in its structure. Moreover, DMC can be produced from CO2 and methanol, which provides a renewable way to reduce anthropogenic CO2. This research has been addressed to assess the use of DMC as a solvent of sunflower oil (SO) and castor oil (CO), with the purpose of obtaining biofuels that can replace fossil diesel as much as possible. The blending of DMC with straight vegetable oils (SVOs) reduces their high viscosity, allowing their usage as drop-in biofuels without chemical treatments. Based on viscosity requirements of European Standard EN 590, the optimal DMC/SVO double blends have been tested as direct biofuels by themselves or mixed with fossil diesel in D/DMC/SVO triple blends. Relevant physico-chemical properties of fuels have been analyzed. Engine parameters such as power output, brake-specific fuel consumption (BSFC) and soot emissions have been studied to determine the effect of new biofuels on efficiency of a diesel engine. An outstanding engine efficiency is shown by the studied D/DMC/SVO triple blends, either with SO or CO as an SVO. The low calorific value of DMC is the main reason for reduction in power and BSFC, as the amount of diesel in the triple blends is reduced. Experimental results demonstrate that the use of these biofuels allows the replacement of up to 40% of fossil diesel, without compromising the power and BSFC of the engine, and accomplishing optimal cold flow properties and a marked drop in exhaust emissions.

2013 ◽  
Vol 724-725 ◽  
pp. 405-408 ◽  
Author(s):  
Ashutosh Kumar Rai ◽  
Bhupendra Singh Chauhan ◽  
Naveen Kumar ◽  
Haeng Muk Cho ◽  
Amrita Pandey

To address the twin problems of fast depletion of fossil fuels and environmental degradation, there is an urgent need to reduce dependence on petroleum derived fuels for better economy and environment. Adaptation of bio-origin alternative fuels can address both these issues. Liquid bio-origin fuels are renewable fuels coming from biological sources and have proved to be a good substitute for petroleum derived oil and environmentally-sustainable solution. To sustain agricultural and agro-engineering needs blends of linseed oil with diesel is a better solution. Present study shows the comparative assessment of physical and chemical analysis of Linseed oil and its blends asa potential fuel for internal combustion diesel engine. To understand diesel engines fuel properties of vegetable oils and comparable physico-chemical properties such as calorific value, kinematic viscosity and density were measured for different fuel blends to predict its suitability as replacement or extender of mineral diesel. The fatty acid composition was measured by using a chromatograph. From the results, it is clear that the physico-chemical properties of linseed oil lies in close resemblance with lower calorific value high viscosity. When blended in the v/v ratio of 5%, 10%, 15%, 20% its calorific value decreases with increase of percentage blends, whereas viscosity and density increases with increase of blend ratio. Linseed oil hence can be recommended as a potential fuel for Diesel engine in neat or blended form without any major change in present design, in the hour of energy need.


Author(s):  
G D Zhang ◽  
H Liu ◽  
X X Xia ◽  
W G Zhang ◽  
J H Fang

The physical and chemical properties of some oxygenated compounds are discussed, including dimethoxymethane (methylal, or DMM), dimethyl carbonate (DMC), and ethyl acetate. In particular, DMC may be a promising additive for diesel fuel owing to its high oxygen content, no carbon-carbon atomic bonds, suitable boiling point, and solubility in diesel fuel. The aim of this research was to study the combustion characteristics and performance of diesel engines operating on diesel fuel mixed with DMC. The experimental results have shown that particulate matter (PM) emissions can be reduced using the DMC oxygenated compound. The combustion analysis indicated that the ignition delay of the engine fuelled with DMC-diesel blended fuel is longer, but combustion duration is much shorter, and the thermal efficiency is increased compared with that of a base diesel engine. Further, if injection is also delayed, NOx emissions can be reduced while PM emissions are still reduced significantly. The experimental study found that diesel engines fuelled with DMC additive had improved combustion and emission performances.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Wójcik ◽  
Renata Różyło ◽  
Regine Schönlechner ◽  
Mary Violet Berger

AbstractThe study aimed to determine the effect of pea protein powder on the pasting behavior and physico-chemical properties including the composition of amino and fatty acids of gluten-free bread with low-carbohydrate content. The control bread recipe was based on buckwheat flour (50 g) and flaxseed flour (50 g) as main flours. Additionally, the improving additives for this control bread such as psyllium husk (4 g), potato fiber (2 g), and guar gum (2 g) were used. The mixture of base flour was supplemented with the addition of pea protein powder (PPP) in the amount ranging from 5 to 25%. The results of Visco analyzes measured by RVA apparatus showed that the addition of 10% PPP to the control bread did not significantly differentiate peak viscosity and pasting temperature which was at the level 3115 cP and 3149 cP and 50 °C, respectively. Supplementation of low-carbohydrate bread with 10% of PPP was acceptable and significantly increased the content of all analyzed amino acids, as well as the amount of α-linolenic acid concerning the control bread. The lowest value of chemical score was observed for leucine. The EAAI (essential amino acid index) value increased from 34 to 40 when the optimal protein supplement was added. The developed gluten-free, low-carbohydrate, and high protein bread was characterized by contents of carbohydrate of 16.9%, protein of 17.1%, fiber of 13.7%, fat of 3.3% and its calorific value was 194 kcal/100 g.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3837
Author(s):  
Mohammad I. Jahirul ◽  
Farhad M. Hossain ◽  
Mohammad G. Rasul ◽  
Ashfaque Ahmed Chowdhury

Utilising pyrolysis as a waste tyre processing technology has various economic and social advantages, along with the fact that it is an effective conversion method. Despite extensive research and a notable likelihood of success, this technology has not yet seen implementation in industrial and commercial settings. In this review, over 100 recent publications are reviewed and summarised to give attention to the current state of global tyre waste management, pyrolysis technology, and plastic waste conversion into liquid fuel. The study also investigated the suitability of pyrolysis oil for use in diesel engines and provided the results on diesel engine performance and emission characteristics. Most studies show that discarded tyres can yield 40–60% liquid oil with a calorific value of more than 40 MJ/kg, indicating that they are appropriate for direct use as boiler and furnace fuel. It has a low cetane index, as well as high viscosity, density, and aromatic content. According to diesel engine performance and emission studies, the power output and combustion efficiency of tyre pyrolysis oil are equivalent to diesel fuel, but engine emissions (NOX, CO, CO, SOX, and HC) are significantly greater in most circumstances. These findings indicate that tyre pyrolysis oil is not suitable for direct use in commercial automobile engines, but it can be utilised as a fuel additive or combined with other fuels.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
E Mestres ◽  
Q Matia-Algué ◽  
A Villamar ◽  
M García-Jiménez ◽  
A Casals ◽  
...  

Abstract Study question Do commercial mineral oil brands differ in their capacity to stabilize the human embryo culture system, and is this related to the oil’s viscosity? Summary answer While the oils’ viscosity only had minor effects on temperature maintenance, it showed a direct correlation with the stability of pH and osmolality during culture. What is known already Mineral oil is a key component of the in vitro embryo culture system, which stabilizes temperature, pH and osmolality of the media during culture. Its use has been implemented worldwide for several decades and many manufacturers currently produce and commercialize oil intended for human embryo culture. Unfortunately, oil remains as one of the less characterized products in the IVF laboratory due to a lack of standardized nomenclature, production and testing. With differing physico-chemical properties, such as viscosity, oils produced by various manufacturers could behave differently to the same culture conditions and, thus, its use may need to be adjusted accordingly. Study design, size, duration Viscosity was quantified in three high-viscosity (H-V) and three low-viscosity (L-V) oils with a viscosity-meter. The required time for media’s pH to equilibrate using each oil was studied, as well as its subsequent stability outside the incubator for 30min. In-drop temperature was assessed during 15min when taking a dish outside the incubator, and again when putting it back. Additionally, each oil’s capacity to avoid media evaporation was studied with daily osmolality measurements during 7 days. Participants/materials, setting, methods pH equilibration was measured with a continuous pHmeter (Log&Guard, Vitrolife) in 4-well dishes prepared with 600µl of medium and 500µl of oil. For the other experiments, 35mm dishes with 4ml of oil and 20µl media droplets were used. pH stability was assessed after 0, 15 and 30min outside the incubator with a blood-gas-analyzer (epoc,SiemensHelthineers). A fine-gauge thermocouple was used to measure in-drop temperature loss/recovery. Daily osmolality readings were taken with a vapor pressure osmometer (Vapro5600,Wescor). Main results and the role of chance The selected oil samples had a viscosity of 115, 111, 52, 22, 18, and 12cP. The medium’s pH took approximately 12h to completely equilibrate under H-V oils, while it took less than 4h in L-V. Similarly, the rise in pH after 30min on a heated stage outside of the incubator with room atmosphere was 0.03, 0.04, 0.06, 0.13, 0.17, and 0.26, respectively. Dishes were taken out of the incubator and placed on a heated surface. In the first five minutes, the in-drop temperature loss ranged between –0.22 and –0.13oC/min, with no significant differences observed between oil types. However, temperature plateaued at a significantly higher value in L-V oils (36.5oC), compared to H-V brands (36.25–36.1oC; p = 0.0005). By contrast, all samples followed a similar pattern when the dishes were returned to the benchtop incubator, with temperature taking around 7 minutes to completely recover. Some media evaporated in all oil groups during the 7-day culture in a dry benchtop incubator. The linear regression performed to compare the evaporation rate between groups showed a statistically significant correlation between oil viscosity and the rate of evaporation (p < 0.0001), with an osmolality rise ranging between +2.55mmol/kg/day in the most viscous oil and +6.29mmol/kg/day in the least viscous. Limitations, reasons for caution While the selected oils for this study represent a wide range of options in the market, future projects could widen this selection and include additional tests, such as optimized bioassays. Results may vary between centers, and thus each laboratory should test and optimize their culture system with their own settings. Wider implications of the findings: Different oil brands have shown differing physico-chemical properties that have a direct effect on the culture system and the stability of several culture conditions. These results may be of major importance to adapt the settings and methodologies followed in each IVF laboratory according to the type of oil being used. Trial registration number Not applicable


2019 ◽  
Vol 8 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Utsab Deb ◽  
Nilutpal Bhuyan ◽  
Satya Sundar Bhattacharya ◽  
Rupam Kataki

Biomass resources are gaining increasing importance world over due to their ease of conversion to various energy product in the face of depleting fossil fuel store and increasing environmental concerns over their use. The present work elucidates different physico-chemical properties of three biomasses, paddy straw (PS)- an agricultural residue, spent paddy straw obtained after mushroom cultivation (SS), and a noxious weed (Parthenium hysterophorus; PR) to understand their properties and to explore the feasibility of using them as feedstocks in different biomass to bioenergy conversion routes. In addition to physico-chemical analysis, biochemical analysis of these biomasses along with XRD, thermogravimetric analysis, FTIR and SEM analysis have been carried out. Present study suggests that PS is a better choice as feedstock compared to both PR and SS. The calorific value to ash content ratio is more in PS (1.13) as compared to PR (1.06) and SS (0.84). Thus, it may be inferred that the biomasses in question are at par with commonly used bio-energy feedstocks like sugarcane bagasse and corn cob. ©2019. CBIORE-IJRED. All rights reserved


Infotekmesin ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 18-22
Author(s):  
Syarifudin Syarifudin ◽  
Syaiful Syaiful

Diesel engines are widely used as driving forces in vehicles and industry due to fuel efficiency and high output power. The wide use of diesel engines triggers an increase in fuel consumption and exhaust emissions that are harmful to health. Jatropha is a renewable fuel as a solution to increase fuel consumption. However, the high viscosity and low calorific value result in reduced performance and increased exhaust emissions. Butanol has a high oxygen content and cetane number and low viscosity compared to diesel and jatropha. Addition of butanol is possible to reduce the decrease in performance and exhaust emissions of diesel engines. this study evaluates the effect of butanol on reducing Isuzu 4JB1 diesel engine direct injection emissions. Percentage of blend used 70/30/0, 65/30/5, 60/30/10, and 55/40/15 based on volume. Tests are carried out at 2500 constant turns with a loading of 25% to 100% using the EGR system. The experimental results showed the presence of butanol caused a decrease in soot emissions produced by diesel engines


2021 ◽  
Author(s):  
Johannes Neuhaus ◽  
Erik von Harbou ◽  
Hans Hasse

Battery performance strongly depends on the choice of the electrolyte-solvent system. Lithium bis(fluorosulfonyl)imide (LiFSI) is a highly interesting novel electrolyte. Information on physico-chemical properties of solutions of LiFSI, however, is scarce. Therefore, the density, shear viscosity, and electrical conductivity of solutions of LiFSI in three pure solvents that are interesting for battery applications: dimethyl carbonate (DMC), ethylene carbonate (EC), and propylene carbonate (PC), were studied experimentally at temperatures between 273 K and 333 K at 1 bar and concentrations of LiFSI up to 0.45 mol mol−1 in the present work. Empirical correlations of the experimental data are provided. The comparison of the data of this work with the corresponding LiPF6 data underpins the attractiveness of LiFSI as an electrolyte in lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document