Analysis of the effect of syngas substitution of diesel on the Heat Release Rate and combustion behaviour of Diesel-Syngas dual fuel engine

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122842
Author(s):  
Francis Omotola Olanrewaju ◽  
Hu Li ◽  
Zahida Aslam ◽  
James Hammerton ◽  
Jon C. Lovett
Author(s):  
Daniel G. Van Alstine ◽  
David T. Montgomery ◽  
Timothy J. Callahan ◽  
Radu C. Florea

Low natural gas prices have made the fuel an attractive alternative to diesel and other common fuels, particularly in applications that consume large quantities of fuel. The North American rail industry is examining the use of locomotives powered by dual fuel engines to realize savings in fuel costs. These dual fuel engines can substitute a large portion of the diesel fuel with natural gas that is premixed with the intake air. Engine knock in traditional premixed spark-ignited combustion is undesirable but well characterized by the Methane Number index, which quantifies the propensity of a gaseous fuel to autoignite after a period of time at high temperature. Originally developed for spark-ignited engines, the ability of the methane number index to predict a fuel’s “knock” behavior in dual fuel combustion is not as fully understood. The objective of this effort is to evaluate the ability of an existing methane number algorithm to predict rapid combustion in a dual fuel engine. Sets of specialized natural gas fuel blends that, according to the MWM methane number algorithm, should have similar knock characteristics are tested in a dual fuel engine and induced to experience rapid combustion. Test results and CFD analysis reveal that rapid or aggressive combustion rates happen late in the dual fuel combustion event with this engine hardware configuration. The transition from normal combustion to late rapid combustion is characterized by changes in the heat release rate profiles. In this study, the transition is also represented by a shift in the crank angle location of the combustion’s peak heat release rate. For fuels of similar methane number that should exhibit similar knock behavior, these transitions occur at significantly different relative air-fuel ratios, demonstrating that the existing MWM methane number algorithm, while excellent for spark-ignited engines, does not fully predict the propensity for rapid combustion to occur in a dual fuel engine within the scope of this study. This indicates that physical and chemical phenomena present in rapid or aggressive dual fuel combustion processes may differ from those in knocking spark-ignited combustion. In its current form a methane number algorithm can be used to conservatively rate dual fuel engines. It is possible that derivation of a new reactivity index that better predicts rapid combustion behavior of the gaseous fuel in dual fuel combustion would allow ratings to be less conservative.


Author(s):  
J Stewart ◽  
A Clarke ◽  
R Chen

A dual-fuel engine is a compression ignition (CI) engine where the primary gaseous fuel source is premixed with air as it enters the combustion chamber. This homogenous mixture is ignited by a small quantity of diesel, the ‘pilot’, that is injected towards the end of the compression stroke. In the present study, a direct-injection CI engine, was fuelled with three different gaseous fuels: methane, propane, and butane. The engine performance at various gaseous concentrations was recorded at 1500 r/min and quarter, half, and three-quarters relative to full a load of 18.7 kW. In order to investigate the combustion performance, a novel three-zone heat release rate analysis was applied to the data. The resulting heat release rate data are used to aid understanding of the performance characteristics of the engine in dual-fuel mode. Data are presented for the heat release rates, effects of engine load and speed, brake specific energy consumption of the engine, and combustion phasing of the three different primary gaseous fuels. Methane permitted the maximum energy substitution, relative to diesel, and yielded the most significant reductions in CO2. However, propane also had significant reductions in CO2 but had an increased diffusional combustion stage which may lend itself to the modern high-speed direct-injection engine.


2013 ◽  
Vol 291-294 ◽  
pp. 1648-1652
Author(s):  
Cheng Wei Zhang ◽  
Bing Xiao

The engine knock has direct relation with the energy release rate. The faster combustion speed is, the higher heat release rate is. If heat release rate is too high, it will deteriorate reliability of the engine. A dual-fuel engine combustion mechanism model is established and intake pressure boundary conditions influence on the dual-fuel engine reliability is studied. Injection timing can supress engine knock and inprove engine reliability. Studies have shown that the greater the intake pressure, the smaller injection timing should be selected and the smaller the intake pressure, the larger injection timing should be selected. Appropriate injection timing can ensure reliability and power of the engine.


Author(s):  
J Stewart ◽  
A Clarke

Dual-fuel engines are modified compression ignition engines, where the primary source of fuel is a gaseous fuel, and ignition is provided by a ‘pilot’ injection of a reduced quantity of diesel. The generally accepted understanding of the dual-fuel engine describes its combustion process as proceeding in three stages. Initially, around half of the pilot will burn and entrain some gaseous fuel into an overall fuel-rich process. Subsequently, the remaining pilot fuel burns and entrains an increasing amount of the primary fuel into its reaction zone. In the final stage, a flame propagation process engulfs the remaining gaseous fuel. In this article, a three-zone model for the analysis of heat-release rate during the dual-fuel combustion process will be derived. This model will be tested against data obtained for diesel combustion and then applied to experimental data from a dual-fuel test program. It will be shown that there is little evidence to support the generally accepted description of the dual-fuel combustion process in a direct injection engine. The conclusion of this work is that dual-fuel combustion may be better considered as a diesel combustion process, where the gaseous fuel modifies the reaction zone surrounding each igniting droplet of the pilot fuel.


2018 ◽  
Vol 20 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Jeongwoo Lee ◽  
Sanghyun Chu ◽  
Jaegu Kang ◽  
Kyoungdoug Min ◽  
Hyunsung Jung ◽  
...  

In this research, there are two major sections for analysis: the characteristics of gasoline and diesel dual-fuel combustion and their application to operating load extension with high thermal efficiency and low emissions. All the experiments were completed using a single-cylinder compression ignition engine with 395 cc displacement. In the first section, the dual-fuel combustion modes were classified into three cases by their heat release rate shapes. Staying at 1500 r/min with a total value of 580 J of low heat for each cycle condition, the diesel injection timing was varied from before top dead center with a 6–46 °crank angle with 70% of gasoline fraction based on the low heating value. Among the modes were two suitable dual-fuel combustion modes for a premixed compression ignition. The first suitable mode shows multiple peaks in the heat release rate (mode 2) and the second suitable mode shows a single peak with a “bell-shaped” heat release rate (mode 3). These two dual-fuel combustion types showed a high gross indicated thermal efficiency of up to 46%. Based on the results in the first section, the practical application of dual-fuel premixed compression ignition combustion was investigated considering a high thermal efficiency and a high-load condition. At a 1500 r/min/gross indicated mean effective pressure of 6.5 bar, 48% of the gross indicated thermal efficiency was obtained by using dual-fuel premixed compression ignition combustion mode 3. This mode was typical of a “reactivity controlled compression ignition,” while the nitrogen oxides and the particulate matter emissions satisfied the EURO-6 regulation (0.21 g/kW h and 2.8 mg/m3, respectively). In addition, a high thermal efficiency (45%) with low maximum pressure rise rate, NOx (nitrogen oxides), and particulate matter emissions was obtained at 2000 r/min/gross indicated mean effective pressure 14 bar condition by the adjustment of dual-fuel premixed compression ignition combustion mode 2. As a result, this research contributes to the understanding and practical application of dual-fuel combustion for a light-duty compression ignition engine.


Author(s):  
Michael Jud ◽  
Georg Fink ◽  
Thomas Sattelmayer

In this paper, a multidimensional computational fluid dynamics (CFD) model coupled with detailed chemistry calculations was used to analyze dual-fuel combustion based on high pressure direct injection of natural gas. The main focus was to analyze the capability of predicting pressure curve and heat release rate (HRR) for different injection strategies. Zero-dimensional homogeneous constant volume reactor calculations were used to select a reaction mechanism for the temperature range below 800 K. As the best-performing mechanism, the Chalmers mechanism was chosen. To validate the numerical model, the setup was first split into a single gas injection and a single Diesel injection. They were validated individually using shadowgraphs obtained from a Rapid Compression Expansion Machine (RCEM). Diesel ignition timing and position in the combustion chamber were close to experimental results. Gas direct injection showed good agreement with regard to penetration and mixing. In the dual-fuel setup, the injection timing of natural gas was varied to create a first case with mainly diffusive combustion and a second case with mainly premixed combustion of natural gas. For both setups good agreement with pressure curve and heat release rate were achieved. A qualitative comparison of shadowgraphs with the density field highlights the important points to predict dual-fuel combustion.


2018 ◽  
Vol 21 (5) ◽  
pp. 781-793 ◽  
Author(s):  
Xingyi (Hunter) Dai ◽  
Satbir Singh ◽  
Sundar R Krishnan ◽  
Kalyan K Srinivasan

Computational fluid dynamics simulations are performed to investigate the combustion and emission characteristics of a diesel/natural gas dual-fuel engine. The computational fluid dynamics model is validated against experimental measurements of cylinder pressure, heat release rate, and exhaust emissions from a single-cylinder research engine. The model predictions of in-cylinder diesel spray distribution and location of diesel ignition sites are related to the behavior observed in measured and predicted heat release rate and emissions. Various distributions of diesel fuel inside the combustion chamber are obtained by modifying the diesel injection timing and the spray included angle. Model predictions suggest that the distribution of diesel fuel in the combustion chamber has a significant impact on the characteristics of heat release rate, explaining experimental observations. Regimes of combustion in the dual-fuel engine are identified. Turbulent flame speed calculations, premixed turbulent combustion regime diagram analysis, and high-temperature front propagation speed estimation indicated that the dual-fuel combustion in this engine was supported by successive local auto-ignition and not by turbulent flame propagation.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4295
Author(s):  
Wei Tian ◽  
Hongchuan Zhang ◽  
Lenian Wang ◽  
Zhiqiang Han ◽  
Wenbin Yu

The impact of premixed n-butanol mixture on the heat release rate was investigated based on a modified light-duty diesel engine. The results show that reactivity stratification is formed in the cylinder through n-butanol port fuel injection (PFI) and diesel direct injection (DI). The initial heat release rate of the diesel/butanol dual-fuel combustion is restrained due to the low ignitability of butanol and the high volatility. Because of the auto-ignition of diesel, premixed n-butanol undergoes a high-temperature reaction, which has an active influence on the heat releasing of diesel/butanol dual-fuel combustion. With the increase of the amount of premixed n-butanol injected, the heat release rate in the initial combustion period has a critical value. When the n-butanol injection quantity is less than 13 mg/cycle, the initial heat release rate of dual-fuel combustion is lower than the pure diesel combustion because the lean premixed n-butanol/air mixture limits the flame propagation. When the fuel injection rate of n-butanol is higher than 13 mg/cycle, the heat release rate is accelerated, leading to obvious flame propagation.


Sign in / Sign up

Export Citation Format

Share Document