scholarly journals Versatile Ni-Ru catalysts for gas phase CO2 conversion: Bringing closer dry reforming, reverse water gas shift and methanation to enable end-products flexibility

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123097
Author(s):  
Loukia-Pantzechroula Merkouri ◽  
Estelle le Saché ◽  
Laura Pastor-Pérez ◽  
Melis S. Duyar ◽  
Tomas Ramirez Reina
2021 ◽  
Author(s):  
Jun-Ichiro Makiura ◽  
Takuma Higo ◽  
Yutaro Kurosawa ◽  
Kota Murakami ◽  
Shuhei Ogo ◽  
...  

Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 741
Author(s):  
Agata Łamacz ◽  
Paulina Jagódka ◽  
Michalina Stawowy ◽  
Krzysztof Matus

In this work, the carbon nanotubes (CNT)-supported nanosized, well-dispersed, CeZrO2 and Ni-CeZrO2 catalysts were obtained and tested for the first time in the reaction of methane dry reforming (DRM). The performance of the hybrid materials was compared with the performance of Ni/CNT catalyst. The mechanism of the DRM reaction and the occurrence of reverse water gas shift reaction (RWGS) and CO2 deoxidation were discussed in terms of catalysts composition. The contribution of RWGS and CO2 deoxidation in the DRM process, demonstrating an increased CO2 consumption when compared to CH4, and H2/CO < 1, varied depending on the catalyst composition, was also studied.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1076
Author(s):  
Lucy Idowu Ajakaiye Jensen ◽  
Sara Blomberg ◽  
Christian Hulteberg

Catalytic conversion of CO2 to CO using reverse water gas shift (RWGS) reaction is a key intermediate step for many CO2 utilization processes. RWGS followed by well-known synthesis gas conversion may emerge as a potential approach to convert CO2 to valuable chemicals and fuels. Nickel (Ni) based catalysts with ceria-zirconia (Ce-Zr) support can be used to tune the metal-support interactions, resulting in a potentially enhanced CO2 hydrogenation rate and elongation of the catalyst lifespan. The thermodynamics of RWGS reaction is favored at high temperature for CO2 conversion. In this paper the effect of Palladium (Pd) and Iridium (Ir) as promoters in the activity of 10 wt%Ni 2 wt%Pd 0.1wt%Ir/CeZrO2 catalyst for the reverse water gas shift reaction was investigated. RWGS was studied for different feed (CO2:H2) ratios. The new active interface between Ni, Pd and Ir particles is proposed to be an important factor in enhancing catalytic activity. 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 catalyst showed a better activity with CO2 conversion of 52.4% and a CO selectivity of 98% for H2:CO2 (1:1) compared to the activity of 10%Ni/CeZrO2 with CO2 conversion of 49.9% and a CO selectivity of 93%. The catalytic activity for different feed ratios using 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 were also studied. The use of palladium and iridium boosts the stability and life span of the Ni-based catalysts. This indicates that the catalyst could be used potentially to design RWGS reactors for CO2 utilization units.


2019 ◽  
Vol 129 ◽  
pp. 105724 ◽  
Author(s):  
Bowen Lu ◽  
Fengjiao Quan ◽  
Zheng Sun ◽  
Falong Jia ◽  
Lizhi Zhang

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1082 ◽  
Author(s):  
Natalie Utsis ◽  
Miron V. Landau ◽  
Alexander Erenburg ◽  
Moti Herskowitz

The Fe-substituted Ba-hexaaluminates (BaFeHAl) are active catalysts for reverse water-gas shift (RWGS) reaction conducted in chemical looping mode. Increasing of the degree of substitution of Al3+ for Fe3+ ions in co-precipitated BaHAl from 60% (BaFeHAl) to 100% (BaFe-hexaferrite, BaFeHF), growing its surface area from 5 to 30 m2/g, and promotion with potassium increased the CO capacity in isothermal RWGS-CL runs at 350–450 °C, where the hexaaluminate/hexaferrite structure is stable. Increasing H2-reduction temperature converts BaFeHAl to a thermally stable BaFeHF modification that contains additional Ba-O-Fe bridges in its structure, reinforcing the connection between alternatively stacked spinel blocks. This material displayed the highest CO capacity of 400 µmol/g at isothermal RWGS-CL run conducted at 550 °C due to increased concentration of oxygen vacancies reflected by greater surface Fe2+/Fe3+ ratio detected by XPS. The results demonstrate direct connection between CO capacity measured in RWGS-CL experiments and calculated CO2 conversion.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 790
Author(s):  
Hui Liu ◽  
Luhui Wang

A 1%Ni/SBA-15(P) catalyst was synthesized with a P123-assisted impregnation method, which exhibited high CO2 conversion and stability in the reverse water-gas shift reaction. For the 1%Ni/SBA-15(P) catalyst, TEM and TPR characterizations demonstrated that the highly dispersed NiO particles at about 3 nm strongly interacted with the SiO2 support. During reverse water-gas shift reaction, the 1%Ni/SBA-15(P) catalyst exhibited higher CO2 conversion than the 1%Ni/SBA-15 catalyst prepared by the conventional impregnation method without P123. The CO2 conversion of the 1%Ni/SBA-15(P) catalyst at 700 °C was 33.7%, which was three times that of the 1%Ni/SBA-15 catalyst. Moreover, the former catalyst was stable at 700 °C within 1000 min. The good activity and stability of the 1%Ni/SBA-15(P) catalyst was owing to small Ni particles that strongly interacted with SBA-15.


2015 ◽  
Vol 40 (46) ◽  
pp. 15985-15993 ◽  
Author(s):  
Feng-man Sun ◽  
Chang-feng Yan ◽  
Zhi-da Wang ◽  
Chang-qing Guo ◽  
Shi-lin Huang

Sign in / Sign up

Export Citation Format

Share Document