Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst

2018 ◽  
Vol 175 ◽  
pp. 17-25 ◽  
Author(s):  
Shuping Zhang ◽  
Houlei Zhang ◽  
Xinzhi Liu ◽  
Shuguang Zhu ◽  
Linlin Hu ◽  
...  
2013 ◽  
Vol 787 ◽  
pp. 184-189 ◽  
Author(s):  
Khanh Vi Dang ◽  
Suzana Yusup ◽  
Yoshimitsu Uemura ◽  
Mohd Fadhil Nuruddin

The market demand of bio-fuel is 11,8 billion litters based on recent reported data. Hence, with the high demand of bio-fuel, the bio-fuel production utilizing rice husk can be one of the solutions. Beside, bio-oil can be produced by pyrolysis process utilizing rice husk as the feedstock. In this research, the optimization condition in producing bio-oil from rice husk by catalytic pyrolysis process was studied. The effect of catalyst type (H-β, H-Y, HZSM-5), catalyst loading (1wt%, 5wt%, 12wt%), temperature (400-500°C) and flow rate (60-100ml/min) were investigated through repetitive experiments using L9 Taguchi Orthogonal Array. The highest liquid yield of 38wt% was obtained at the optimum conditions with temperature of 500°C with nitrogen flow rate of 60ml/min and 12wt% of H-ZSM-5.


2013 ◽  
Vol 106 ◽  
pp. 385-391 ◽  
Author(s):  
Leiyu Zhou ◽  
Hongmin Yang ◽  
Hao Wu ◽  
Meng Wang ◽  
Daqian Cheng

2013 ◽  
Vol 103 ◽  
pp. 362-368 ◽  
Author(s):  
Muhammad S. Abu Bakar ◽  
James O. Titiloye

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 959 ◽  
Author(s):  
Nur Adilah Abd Rahman ◽  
Javier Fermoso ◽  
Aimaro Sanna

This paper investigates the use of Li-LSX-zeolite catalyst over three regeneration cycles in presence of non-treated and acid pre-treated Isochrysis sp. microalgae. The spent and regenerated catalysts were characterised by surface analysis, elemental analysis (EA), SEM-EDS, and XRD to correlate their properties with the bio-oil yield and quality. The acid pre-treatment removed alkali metals, reducing gas yield in favour of bio-oil, but, at the same time, led to catalyst deactivation by fouling. Differently, the non-treated microalgae resulted in a bio-oil enriched in C and H and depleted in O, compared to the pre-treated ones, denoting higher deoxygenation activity. After 3 pyrolysis/regeneration cycles, the analyses suggest that there are no major changes on catalyst using non-treated microalgae. Regeneration at 700 °C has been shown to be able to remove most of the coke without damaging the Li-LSX zeolite structure. In summary, Li-LSX zeolite was effective in maintaining deoxygenation activity over three cycles in the pyrolysis of non-treated Isochrysis microalgae, while the algae pre-treatment with sulphuric acid was detrimental on the catalyst activity.


2021 ◽  
Vol 657 (1) ◽  
pp. 012023
Author(s):  
Zengtong Deng ◽  
Yi Wang ◽  
Song Hu ◽  
Sheng Su ◽  
Long Jiang ◽  
...  
Keyword(s):  

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121778
Author(s):  
Shasha Liu ◽  
Gang Wu ◽  
Syed Shatir A. Syed-Hassan ◽  
Bin Li ◽  
Xun Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document